update model card README.md
Browse files
README.md
CHANGED
@@ -19,21 +19,21 @@ model-index:
|
|
19 |
name: lg-ner
|
20 |
type: lg-ner
|
21 |
config: lug
|
22 |
-
split:
|
23 |
args: lug
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value: 0.
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value: 0.
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value: 0.
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss:
|
47 |
-
- Precision: 0.
|
48 |
-
- Recall: 0.
|
49 |
-
- F1: 0.
|
50 |
-
- Accuracy: 0.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -78,21 +78,21 @@ The following hyperparameters were used during training:
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
-
|
|
82 |
-
|
|
83 |
-
|
|
84 |
-
|
|
85 |
-
|
|
86 |
-
|
|
87 |
-
|
|
88 |
-
|
|
89 |
-
|
|
90 |
-
|
|
91 |
|
92 |
|
93 |
### Framework versions
|
94 |
|
95 |
-
- Transformers 4.
|
96 |
-
- Pytorch 1.
|
97 |
-
- Datasets 2.
|
98 |
- Tokenizers 0.13.2
|
|
|
19 |
name: lg-ner
|
20 |
type: lg-ner
|
21 |
config: lug
|
22 |
+
split: test
|
23 |
args: lug
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
+
value: 0.9370212765957446
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
+
value: 0.9359591952394446
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
+
value: 0.9364899347887723
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
+
value: 0.9824210946863764
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.0908
|
47 |
+
- Precision: 0.9370
|
48 |
+
- Recall: 0.9360
|
49 |
+
- F1: 0.9365
|
50 |
+
- Accuracy: 0.9824
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| 0.5792 | 1.0 | 609 | 0.2463 | 0.7259 | 0.7662 | 0.7455 | 0.9406 |
|
82 |
+
| 0.2271 | 2.0 | 1218 | 0.1587 | 0.8198 | 0.8782 | 0.8480 | 0.9607 |
|
83 |
+
| 0.1652 | 3.0 | 1827 | 0.1289 | 0.8612 | 0.8918 | 0.8762 | 0.9677 |
|
84 |
+
| 0.1266 | 4.0 | 2436 | 0.1083 | 0.8990 | 0.9059 | 0.9025 | 0.9744 |
|
85 |
+
| 0.081 | 5.0 | 3045 | 0.1043 | 0.9183 | 0.9147 | 0.9165 | 0.9767 |
|
86 |
+
| 0.0676 | 6.0 | 3654 | 0.0893 | 0.9261 | 0.9334 | 0.9297 | 0.9811 |
|
87 |
+
| 0.0565 | 7.0 | 4263 | 0.0877 | 0.9389 | 0.9368 | 0.9379 | 0.9813 |
|
88 |
+
| 0.0519 | 8.0 | 4872 | 0.0919 | 0.9404 | 0.9340 | 0.9372 | 0.9819 |
|
89 |
+
| 0.047 | 9.0 | 5481 | 0.0896 | 0.9376 | 0.9360 | 0.9368 | 0.9825 |
|
90 |
+
| 0.0379 | 10.0 | 6090 | 0.0908 | 0.9370 | 0.9360 | 0.9365 | 0.9824 |
|
91 |
|
92 |
|
93 |
### Framework versions
|
94 |
|
95 |
+
- Transformers 4.26.1
|
96 |
+
- Pytorch 1.13.1+cu116
|
97 |
+
- Datasets 2.10.1
|
98 |
- Tokenizers 0.13.2
|