update model card README.md
Browse files
README.md
CHANGED
@@ -24,16 +24,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value: 0.
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value: 0.
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value: 0.
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss:
|
47 |
-
- Precision: 0.
|
48 |
-
- Recall: 0.
|
49 |
-
- F1: 0.
|
50 |
-
- Accuracy: 0.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -78,16 +78,16 @@ The following hyperparameters were used during training:
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
-
| No log | 1.0 | 25 |
|
82 |
-
| No log | 2.0 | 50 |
|
83 |
-
| No log | 3.0 | 75 |
|
84 |
-
| No log | 4.0 | 100 |
|
85 |
-
| No log | 5.0 | 125 |
|
86 |
-
| No log | 6.0 | 150 |
|
87 |
-
| No log | 7.0 | 175 |
|
88 |
-
| No log | 8.0 | 200 |
|
89 |
-
| No log | 9.0 | 225 |
|
90 |
-
| No log | 10.0 | 250 |
|
91 |
|
92 |
|
93 |
### Framework versions
|
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
+
value: 0.29015544041450775
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
+
value: 0.27722772277227725
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
+
value: 0.2835443037974684
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
+
value: 0.7297843665768194
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 1.0530
|
47 |
+
- Precision: 0.2902
|
48 |
+
- Recall: 0.2772
|
49 |
+
- F1: 0.2835
|
50 |
+
- Accuracy: 0.7298
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| No log | 1.0 | 25 | 1.2878 | 0.0 | 0.0 | 0.0 | 0.7271 |
|
82 |
+
| No log | 2.0 | 50 | 1.2373 | 0.0 | 0.0 | 0.0 | 0.7271 |
|
83 |
+
| No log | 3.0 | 75 | 1.2309 | 0.3542 | 0.1683 | 0.2282 | 0.7244 |
|
84 |
+
| No log | 4.0 | 100 | 1.1505 | 0.2712 | 0.2376 | 0.2533 | 0.7183 |
|
85 |
+
| No log | 5.0 | 125 | 1.1360 | 0.2579 | 0.2426 | 0.25 | 0.7170 |
|
86 |
+
| No log | 6.0 | 150 | 1.0932 | 0.3108 | 0.2277 | 0.2629 | 0.7338 |
|
87 |
+
| No log | 7.0 | 175 | 1.0761 | 0.2989 | 0.2574 | 0.2766 | 0.7298 |
|
88 |
+
| No log | 8.0 | 200 | 1.0645 | 0.2805 | 0.3069 | 0.2931 | 0.7244 |
|
89 |
+
| No log | 9.0 | 225 | 1.0577 | 0.3022 | 0.2723 | 0.2865 | 0.7325 |
|
90 |
+
| No log | 10.0 | 250 | 1.0530 | 0.2902 | 0.2772 | 0.2835 | 0.7298 |
|
91 |
|
92 |
|
93 |
### Framework versions
|