--- license: mit tags: - generated_from_trainer datasets: - lg-ner metrics: - precision - recall - f1 - accuracy model-index: - name: luganda-ner-v1 results: - task: name: Token Classification type: token-classification dataset: name: lg-ner type: lg-ner config: lug split: test args: lug metrics: - name: Precision type: precision value: 0.9370212765957446 - name: Recall type: recall value: 0.9359591952394446 - name: F1 type: f1 value: 0.9364899347887723 - name: Accuracy type: accuracy value: 0.9824210946863764 --- # luganda-ner-v1 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0908 - Precision: 0.9370 - Recall: 0.9360 - F1: 0.9365 - Accuracy: 0.9824 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.5792 | 1.0 | 609 | 0.2463 | 0.7259 | 0.7662 | 0.7455 | 0.9406 | | 0.2271 | 2.0 | 1218 | 0.1587 | 0.8198 | 0.8782 | 0.8480 | 0.9607 | | 0.1652 | 3.0 | 1827 | 0.1289 | 0.8612 | 0.8918 | 0.8762 | 0.9677 | | 0.1266 | 4.0 | 2436 | 0.1083 | 0.8990 | 0.9059 | 0.9025 | 0.9744 | | 0.081 | 5.0 | 3045 | 0.1043 | 0.9183 | 0.9147 | 0.9165 | 0.9767 | | 0.0676 | 6.0 | 3654 | 0.0893 | 0.9261 | 0.9334 | 0.9297 | 0.9811 | | 0.0565 | 7.0 | 4263 | 0.0877 | 0.9389 | 0.9368 | 0.9379 | 0.9813 | | 0.0519 | 8.0 | 4872 | 0.0919 | 0.9404 | 0.9340 | 0.9372 | 0.9819 | | 0.047 | 9.0 | 5481 | 0.0896 | 0.9376 | 0.9360 | 0.9368 | 0.9825 | | 0.0379 | 10.0 | 6090 | 0.0908 | 0.9370 | 0.9360 | 0.9365 | 0.9824 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2