Conrad747 commited on
Commit
3e4cdf2
·
1 Parent(s): 8595978

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - lg-ner
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: luganda-ner-v4
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: lg-ner
20
+ type: lg-ner
21
+ config: lug
22
+ split: test
23
+ args: lug
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.7849185946872322
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.7862660944206008
31
+ - name: F1
32
+ type: f1
33
+ value: 0.7855917667238421
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9542220362038296
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # luganda-ner-v4
43
+
44
+ This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the lg-ner dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.2222
47
+ - Precision: 0.7849
48
+ - Recall: 0.7863
49
+ - F1: 0.7856
50
+ - Accuracy: 0.9542
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 8
71
+ - eval_batch_size: 8
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 10
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 1.0 | 261 | 0.3533 | 0.6141 | 0.4644 | 0.5288 | 0.9208 |
82
+ | 0.5126 | 2.0 | 522 | 0.2765 | 0.6658 | 0.6567 | 0.6612 | 0.9326 |
83
+ | 0.5126 | 3.0 | 783 | 0.2336 | 0.6834 | 0.7133 | 0.6980 | 0.9433 |
84
+ | 0.2374 | 4.0 | 1044 | 0.2207 | 0.7358 | 0.7433 | 0.7395 | 0.9489 |
85
+ | 0.2374 | 5.0 | 1305 | 0.2134 | 0.7796 | 0.7528 | 0.7659 | 0.9525 |
86
+ | 0.1646 | 6.0 | 1566 | 0.2359 | 0.7423 | 0.7665 | 0.7542 | 0.9484 |
87
+ | 0.1646 | 7.0 | 1827 | 0.2223 | 0.7807 | 0.7854 | 0.7831 | 0.9541 |
88
+ | 0.1219 | 8.0 | 2088 | 0.2300 | 0.8140 | 0.7665 | 0.7896 | 0.9557 |
89
+ | 0.1219 | 9.0 | 2349 | 0.2223 | 0.7733 | 0.7966 | 0.7848 | 0.9547 |
90
+ | 0.1016 | 10.0 | 2610 | 0.2222 | 0.7849 | 0.7863 | 0.7856 | 0.9542 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.26.1
96
+ - Pytorch 1.13.1+cu116
97
+ - Datasets 2.10.1
98
+ - Tokenizers 0.13.2