File size: 2,493 Bytes
e2768bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
license: afl-3.0
tags:
- generated_from_trainer
datasets:
- lg-ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: luganda-ner-v5
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: lg-ner
type: lg-ner
config: lug
split: test
args: lug
metrics:
- name: Precision
type: precision
value: 0.8502710027100271
- name: Recall
type: recall
value: 0.8428475486903962
- name: F1
type: f1
value: 0.8465430016863407
- name: Accuracy
type: accuracy
value: 0.959089589080877
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# luganda-ner-v5
This model is a fine-tuned version of [masakhane/afroxlmr-large-ner-masakhaner-1.0_2.0](https://huggingface.co/masakhane/afroxlmr-large-ner-masakhaner-1.0_2.0) on the lg-ner dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2328
- Precision: 0.8503
- Recall: 0.8428
- F1: 0.8465
- Accuracy: 0.9591
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 261 | 0.2276 | 0.7703 | 0.6441 | 0.7015 | 0.9353 |
| 0.3176 | 2.0 | 522 | 0.1848 | 0.8431 | 0.7542 | 0.7962 | 0.9545 |
| 0.3176 | 3.0 | 783 | 0.1871 | 0.8564 | 0.8173 | 0.8364 | 0.9576 |
| 0.0753 | 4.0 | 1044 | 0.2015 | 0.8691 | 0.8294 | 0.8488 | 0.9614 |
| 0.0753 | 5.0 | 1305 | 0.2325 | 0.8616 | 0.8361 | 0.8487 | 0.9584 |
| 0.0261 | 6.0 | 1566 | 0.2328 | 0.8503 | 0.8428 | 0.8465 | 0.9591 |
### Framework versions
- Transformers 4.27.4
- Pytorch 1.13.1+cu116
- Datasets 2.11.0
- Tokenizers 0.13.2
|