Conrad747 commited on
Commit
5e5510c
1 Parent(s): 5a2ef0c

Training complete

Browse files
Files changed (1) hide show
  1. README.md +25 -24
README.md CHANGED
@@ -1,5 +1,6 @@
1
  ---
2
  license: mit
 
3
  tags:
4
  - generated_from_trainer
5
  datasets:
@@ -24,16 +25,16 @@ model-index:
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.8241451500348919
28
  - name: Recall
29
  type: recall
30
- value: 0.7931497649429147
31
  - name: F1
32
  type: f1
33
- value: 0.8083504449007528
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.9525918396979817
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -41,13 +42,13 @@ should probably proofread and complete it, then remove this comment. -->
41
 
42
  # luganda-ner-v6
43
 
44
- This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the lg-ner dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.2417
47
- - Precision: 0.8241
48
- - Recall: 0.7931
49
- - F1: 0.8084
50
- - Accuracy: 0.9526
51
 
52
  ## Model description
53
 
@@ -78,21 +79,21 @@ The following hyperparameters were used during training:
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | No log | 1.0 | 261 | 0.4290 | 0.5281 | 0.3096 | 0.3903 | 0.8864 |
82
- | 0.5483 | 2.0 | 522 | 0.2873 | 0.7307 | 0.5776 | 0.6452 | 0.9216 |
83
- | 0.5483 | 3.0 | 783 | 0.2482 | 0.7745 | 0.6783 | 0.7232 | 0.9334 |
84
- | 0.1931 | 4.0 | 1044 | 0.2472 | 0.7671 | 0.6991 | 0.7316 | 0.9360 |
85
- | 0.1931 | 5.0 | 1305 | 0.2425 | 0.8053 | 0.7388 | 0.7706 | 0.9433 |
86
- | 0.1016 | 6.0 | 1566 | 0.2157 | 0.8253 | 0.7710 | 0.7972 | 0.9490 |
87
- | 0.1016 | 7.0 | 1827 | 0.2332 | 0.8161 | 0.7717 | 0.7932 | 0.9501 |
88
- | 0.0654 | 8.0 | 2088 | 0.2375 | 0.8312 | 0.7804 | 0.8050 | 0.9514 |
89
- | 0.0654 | 9.0 | 2349 | 0.2367 | 0.8309 | 0.7884 | 0.8091 | 0.9528 |
90
- | 0.047 | 10.0 | 2610 | 0.2417 | 0.8241 | 0.7931 | 0.8084 | 0.9526 |
91
 
92
 
93
  ### Framework versions
94
 
95
- - Transformers 4.27.4
96
- - Pytorch 1.13.1+cu116
97
- - Datasets 2.11.0
98
- - Tokenizers 0.13.2
 
1
  ---
2
  license: mit
3
+ base_model: xlm-roberta-base
4
  tags:
5
  - generated_from_trainer
6
  datasets:
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.7679892400806994
29
  - name: Recall
30
  type: recall
31
+ value: 0.7669576897246474
32
  - name: F1
33
  type: f1
34
+ value: 0.7674731182795699
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.9394874401045448
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
42
 
43
  # luganda-ner-v6
44
 
45
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.2845
48
+ - Precision: 0.7680
49
+ - Recall: 0.7670
50
+ - F1: 0.7675
51
+ - Accuracy: 0.9395
52
 
53
  ## Model description
54
 
 
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | No log | 1.0 | 261 | 0.6034 | 0.4624 | 0.2149 | 0.2934 | 0.8369 |
83
+ | 0.6707 | 2.0 | 522 | 0.4082 | 0.7214 | 0.4453 | 0.5507 | 0.8948 |
84
+ | 0.6707 | 3.0 | 783 | 0.3172 | 0.7413 | 0.6179 | 0.6740 | 0.9181 |
85
+ | 0.295 | 4.0 | 1044 | 0.3241 | 0.7305 | 0.6810 | 0.7049 | 0.9124 |
86
+ | 0.295 | 5.0 | 1305 | 0.2784 | 0.7241 | 0.7173 | 0.7206 | 0.9271 |
87
+ | 0.1781 | 6.0 | 1566 | 0.2703 | 0.7643 | 0.7381 | 0.7509 | 0.9331 |
88
+ | 0.1781 | 7.0 | 1827 | 0.2585 | 0.7865 | 0.7670 | 0.7766 | 0.9418 |
89
+ | 0.1172 | 8.0 | 2088 | 0.2696 | 0.8109 | 0.7488 | 0.7786 | 0.9420 |
90
+ | 0.1172 | 9.0 | 2349 | 0.2680 | 0.7792 | 0.7535 | 0.7661 | 0.9422 |
91
+ | 0.0874 | 10.0 | 2610 | 0.2845 | 0.7680 | 0.7670 | 0.7675 | 0.9395 |
92
 
93
 
94
  ### Framework versions
95
 
96
+ - Transformers 4.34.1
97
+ - Pytorch 2.1.0+cu118
98
+ - Datasets 2.14.6
99
+ - Tokenizers 0.14.1