Training complete
Browse files
README.md
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
datasets:
|
@@ -24,16 +25,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value: 0.
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value: 0.
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value: 0.
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -41,13 +42,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
41 |
|
42 |
# luganda-ner-v6
|
43 |
|
44 |
-
This model is a fine-tuned version of [
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 0.
|
47 |
-
- Precision: 0.
|
48 |
-
- Recall: 0.
|
49 |
-
- F1: 0.
|
50 |
-
- Accuracy: 0.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -78,21 +79,21 @@ The following hyperparameters were used during training:
|
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
-
| No log | 1.0 | 261 | 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
|
92 |
|
93 |
### Framework versions
|
94 |
|
95 |
-
- Transformers 4.
|
96 |
-
- Pytorch 1.
|
97 |
-
- Datasets 2.
|
98 |
-
- Tokenizers 0.
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
base_model: xlm-roberta-base
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
+
value: 0.7679892400806994
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
+
value: 0.7669576897246474
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
+
value: 0.7674731182795699
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
+
value: 0.9394874401045448
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
42 |
|
43 |
# luganda-ner-v6
|
44 |
|
45 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the lg-ner dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.2845
|
48 |
+
- Precision: 0.7680
|
49 |
+
- Recall: 0.7670
|
50 |
+
- F1: 0.7675
|
51 |
+
- Accuracy: 0.9395
|
52 |
|
53 |
## Model description
|
54 |
|
|
|
79 |
|
80 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| No log | 1.0 | 261 | 0.6034 | 0.4624 | 0.2149 | 0.2934 | 0.8369 |
|
83 |
+
| 0.6707 | 2.0 | 522 | 0.4082 | 0.7214 | 0.4453 | 0.5507 | 0.8948 |
|
84 |
+
| 0.6707 | 3.0 | 783 | 0.3172 | 0.7413 | 0.6179 | 0.6740 | 0.9181 |
|
85 |
+
| 0.295 | 4.0 | 1044 | 0.3241 | 0.7305 | 0.6810 | 0.7049 | 0.9124 |
|
86 |
+
| 0.295 | 5.0 | 1305 | 0.2784 | 0.7241 | 0.7173 | 0.7206 | 0.9271 |
|
87 |
+
| 0.1781 | 6.0 | 1566 | 0.2703 | 0.7643 | 0.7381 | 0.7509 | 0.9331 |
|
88 |
+
| 0.1781 | 7.0 | 1827 | 0.2585 | 0.7865 | 0.7670 | 0.7766 | 0.9418 |
|
89 |
+
| 0.1172 | 8.0 | 2088 | 0.2696 | 0.8109 | 0.7488 | 0.7786 | 0.9420 |
|
90 |
+
| 0.1172 | 9.0 | 2349 | 0.2680 | 0.7792 | 0.7535 | 0.7661 | 0.9422 |
|
91 |
+
| 0.0874 | 10.0 | 2610 | 0.2845 | 0.7680 | 0.7670 | 0.7675 | 0.9395 |
|
92 |
|
93 |
|
94 |
### Framework versions
|
95 |
|
96 |
+
- Transformers 4.34.1
|
97 |
+
- Pytorch 2.1.0+cu118
|
98 |
+
- Datasets 2.14.6
|
99 |
+
- Tokenizers 0.14.1
|