Conrad747 commited on
Commit
af3e214
1 Parent(s): 4368719

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - lg-ner
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: luganda-ner-v6
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: lg-ner
20
+ type: lg-ner
21
+ config: lug
22
+ split: test
23
+ args: lug
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.8241451500348919
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.7931497649429147
31
+ - name: F1
32
+ type: f1
33
+ value: 0.8083504449007528
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9525918396979817
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # luganda-ner-v6
43
+
44
+ This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the lg-ner dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.2417
47
+ - Precision: 0.8241
48
+ - Recall: 0.7931
49
+ - F1: 0.8084
50
+ - Accuracy: 0.9526
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 8
71
+ - eval_batch_size: 8
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 10
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 1.0 | 261 | 0.4290 | 0.5281 | 0.3096 | 0.3903 | 0.8864 |
82
+ | 0.5483 | 2.0 | 522 | 0.2873 | 0.7307 | 0.5776 | 0.6452 | 0.9216 |
83
+ | 0.5483 | 3.0 | 783 | 0.2482 | 0.7745 | 0.6783 | 0.7232 | 0.9334 |
84
+ | 0.1931 | 4.0 | 1044 | 0.2472 | 0.7671 | 0.6991 | 0.7316 | 0.9360 |
85
+ | 0.1931 | 5.0 | 1305 | 0.2425 | 0.8053 | 0.7388 | 0.7706 | 0.9433 |
86
+ | 0.1016 | 6.0 | 1566 | 0.2157 | 0.8253 | 0.7710 | 0.7972 | 0.9490 |
87
+ | 0.1016 | 7.0 | 1827 | 0.2332 | 0.8161 | 0.7717 | 0.7932 | 0.9501 |
88
+ | 0.0654 | 8.0 | 2088 | 0.2375 | 0.8312 | 0.7804 | 0.8050 | 0.9514 |
89
+ | 0.0654 | 9.0 | 2349 | 0.2367 | 0.8309 | 0.7884 | 0.8091 | 0.9528 |
90
+ | 0.047 | 10.0 | 2610 | 0.2417 | 0.8241 | 0.7931 | 0.8084 | 0.9526 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.27.4
96
+ - Pytorch 1.13.1+cu116
97
+ - Datasets 2.11.0
98
+ - Tokenizers 0.13.2