update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- lg-ner
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: luganda-ner-v6
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: lg-ner
|
20 |
+
type: lg-ner
|
21 |
+
config: lug
|
22 |
+
split: test
|
23 |
+
args: lug
|
24 |
+
metrics:
|
25 |
+
- name: Precision
|
26 |
+
type: precision
|
27 |
+
value: 0.8241451500348919
|
28 |
+
- name: Recall
|
29 |
+
type: recall
|
30 |
+
value: 0.7931497649429147
|
31 |
+
- name: F1
|
32 |
+
type: f1
|
33 |
+
value: 0.8083504449007528
|
34 |
+
- name: Accuracy
|
35 |
+
type: accuracy
|
36 |
+
value: 0.9525918396979817
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# luganda-ner-v6
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [Davlan/afro-xlmr-base](https://huggingface.co/Davlan/afro-xlmr-base) on the lg-ner dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.2417
|
47 |
+
- Precision: 0.8241
|
48 |
+
- Recall: 0.7931
|
49 |
+
- F1: 0.8084
|
50 |
+
- Accuracy: 0.9526
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 2e-05
|
70 |
+
- train_batch_size: 8
|
71 |
+
- eval_batch_size: 8
|
72 |
+
- seed: 42
|
73 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
+
- lr_scheduler_type: linear
|
75 |
+
- num_epochs: 10
|
76 |
+
|
77 |
+
### Training results
|
78 |
+
|
79 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| No log | 1.0 | 261 | 0.4290 | 0.5281 | 0.3096 | 0.3903 | 0.8864 |
|
82 |
+
| 0.5483 | 2.0 | 522 | 0.2873 | 0.7307 | 0.5776 | 0.6452 | 0.9216 |
|
83 |
+
| 0.5483 | 3.0 | 783 | 0.2482 | 0.7745 | 0.6783 | 0.7232 | 0.9334 |
|
84 |
+
| 0.1931 | 4.0 | 1044 | 0.2472 | 0.7671 | 0.6991 | 0.7316 | 0.9360 |
|
85 |
+
| 0.1931 | 5.0 | 1305 | 0.2425 | 0.8053 | 0.7388 | 0.7706 | 0.9433 |
|
86 |
+
| 0.1016 | 6.0 | 1566 | 0.2157 | 0.8253 | 0.7710 | 0.7972 | 0.9490 |
|
87 |
+
| 0.1016 | 7.0 | 1827 | 0.2332 | 0.8161 | 0.7717 | 0.7932 | 0.9501 |
|
88 |
+
| 0.0654 | 8.0 | 2088 | 0.2375 | 0.8312 | 0.7804 | 0.8050 | 0.9514 |
|
89 |
+
| 0.0654 | 9.0 | 2349 | 0.2367 | 0.8309 | 0.7884 | 0.8091 | 0.9528 |
|
90 |
+
| 0.047 | 10.0 | 2610 | 0.2417 | 0.8241 | 0.7931 | 0.8084 | 0.9526 |
|
91 |
+
|
92 |
+
|
93 |
+
### Framework versions
|
94 |
+
|
95 |
+
- Transformers 4.27.4
|
96 |
+
- Pytorch 1.13.1+cu116
|
97 |
+
- Datasets 2.11.0
|
98 |
+
- Tokenizers 0.13.2
|