Criser2013 commited on
Commit
5f5b38a
·
verified ·
1 Parent(s): d9f391f

End of training

Browse files
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: dccuchile/bert-base-spanish-wwm-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - biobert_json
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: NER-finetuning-BETO-UNCASED-BIOBERT
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: biobert_json
21
+ type: biobert_json
22
+ config: Biobert_json
23
+ split: validation
24
+ args: Biobert_json
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.9467966573816156
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.9626168224299065
32
+ - name: F1
33
+ type: f1
34
+ value: 0.9546412020783598
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9762832612799123
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # NER-finetuning-BETO-UNCASED-BIOBERT
44
+
45
+ This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on the biobert_json dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.1165
48
+ - Precision: 0.9468
49
+ - Recall: 0.9626
50
+ - F1: 0.9546
51
+ - Accuracy: 0.9763
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 2e-05
71
+ - train_batch_size: 16
72
+ - eval_batch_size: 16
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - num_epochs: 10
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.3684 | 1.0 | 612 | 0.1093 | 0.9356 | 0.9523 | 0.9438 | 0.9708 |
83
+ | 0.1191 | 2.0 | 1224 | 0.1026 | 0.9388 | 0.9674 | 0.9529 | 0.9746 |
84
+ | 0.0842 | 3.0 | 1836 | 0.1011 | 0.9394 | 0.9690 | 0.9539 | 0.9754 |
85
+ | 0.0657 | 4.0 | 2448 | 0.0986 | 0.9468 | 0.9682 | 0.9574 | 0.9779 |
86
+ | 0.0437 | 5.0 | 3060 | 0.0988 | 0.9499 | 0.9649 | 0.9573 | 0.9772 |
87
+ | 0.0395 | 6.0 | 3672 | 0.1070 | 0.9446 | 0.9645 | 0.9545 | 0.9757 |
88
+ | 0.0311 | 7.0 | 4284 | 0.1110 | 0.9459 | 0.9673 | 0.9565 | 0.9766 |
89
+ | 0.0302 | 8.0 | 4896 | 0.1141 | 0.9449 | 0.9635 | 0.9541 | 0.9763 |
90
+ | 0.023 | 9.0 | 5508 | 0.1133 | 0.9485 | 0.9641 | 0.9563 | 0.9770 |
91
+ | 0.0198 | 10.0 | 6120 | 0.1165 | 0.9468 | 0.9626 | 0.9546 | 0.9763 |
92
+
93
+
94
+ ### Framework versions
95
+
96
+ - Transformers 4.45.1
97
+ - Pytorch 2.4.0
98
+ - Datasets 3.0.1
99
+ - Tokenizers 0.20.0
runs/Nov08_22-15-01_7b5fca91546f/events.out.tfevents.1731104105.7b5fca91546f.30.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9ddb808b0999658e5fe8b762d4e3031dd3487d57d78e87d893edd2371587ad4f
3
- size 13212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:455baf19a6caec726a6614535274d2b4955696aabacb63da8c9aee3ccd478d88
3
+ size 14038