--- library_name: transformers base_model: dccuchile/bert-base-spanish-wwm-uncased tags: - generated_from_trainer datasets: - biobert_json metrics: - precision - recall - f1 - accuracy model-index: - name: NER-finetuning-BETO-UNCASED-BIOBERT results: - task: name: Token Classification type: token-classification dataset: name: biobert_json type: biobert_json config: Biobert_json split: validation args: Biobert_json metrics: - name: Precision type: precision value: 0.9467966573816156 - name: Recall type: recall value: 0.9626168224299065 - name: F1 type: f1 value: 0.9546412020783598 - name: Accuracy type: accuracy value: 0.9762832612799123 --- # NER-finetuning-BETO-UNCASED-BIOBERT This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on the biobert_json dataset. It achieves the following results on the evaluation set: - Loss: 0.1165 - Precision: 0.9468 - Recall: 0.9626 - F1: 0.9546 - Accuracy: 0.9763 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3684 | 1.0 | 612 | 0.1093 | 0.9356 | 0.9523 | 0.9438 | 0.9708 | | 0.1191 | 2.0 | 1224 | 0.1026 | 0.9388 | 0.9674 | 0.9529 | 0.9746 | | 0.0842 | 3.0 | 1836 | 0.1011 | 0.9394 | 0.9690 | 0.9539 | 0.9754 | | 0.0657 | 4.0 | 2448 | 0.0986 | 0.9468 | 0.9682 | 0.9574 | 0.9779 | | 0.0437 | 5.0 | 3060 | 0.0988 | 0.9499 | 0.9649 | 0.9573 | 0.9772 | | 0.0395 | 6.0 | 3672 | 0.1070 | 0.9446 | 0.9645 | 0.9545 | 0.9757 | | 0.0311 | 7.0 | 4284 | 0.1110 | 0.9459 | 0.9673 | 0.9565 | 0.9766 | | 0.0302 | 8.0 | 4896 | 0.1141 | 0.9449 | 0.9635 | 0.9541 | 0.9763 | | 0.023 | 9.0 | 5508 | 0.1133 | 0.9485 | 0.9641 | 0.9563 | 0.9770 | | 0.0198 | 10.0 | 6120 | 0.1165 | 0.9468 | 0.9626 | 0.9546 | 0.9763 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0