--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - metric widget: - text: Damn, my condolences to you bro - text: No Friday Im booked all day - text: Im sorry. - text: Hiding in the bush - text: '*"The conservative party is a cult." Says the group that bans words and follows socialism.??*' pipeline_tag: text-classification inference: true base_model: sentence-transformers/paraphrase-mpnet-base-v2 model-index: - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: metric value: 0.6947118450822154 name: Metric --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 8 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | | | 3 | | | 6 | | | 5 | | | 2 | | | 4 | | | 0 | | | 7 | | ## Evaluation ### Metrics | Label | Metric | |:--------|:-------| | **all** | 0.6947 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("CrisisNarratives/setfit-8classes-single_label") # Run inference preds = model("Im sorry.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:-----| | Word count | 1 | 25.3789 | 1681 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 156 | | 1 | 145 | | 2 | 52 | | 3 | 46 | | 4 | 63 | | 5 | 35 | | 6 | 37 | | 7 | 7 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (3, 3) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 40 - body_learning_rate: (1.752e-05, 1.752e-05) - head_learning_rate: 1.752e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 30 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0004 | 1 | 0.4094 | - | | 0.0185 | 50 | 0.3207 | - | | 0.0370 | 100 | 0.2635 | - | | 0.0555 | 150 | 0.2347 | - | | 0.0739 | 200 | 0.2686 | - | | 0.0924 | 250 | 0.2575 | - | | 0.1109 | 300 | 0.1983 | - | | 0.1294 | 350 | 0.2387 | - | | 0.1479 | 400 | 0.2002 | - | | 0.1664 | 450 | 0.2112 | - | | 0.1848 | 500 | 0.0913 | - | | 0.2033 | 550 | 0.1715 | - | | 0.2218 | 600 | 0.0686 | - | | 0.2403 | 650 | 0.0166 | - | | 0.2588 | 700 | 0.0128 | - | | 0.2773 | 750 | 0.0102 | - | | 0.2957 | 800 | 0.0071 | - | | 0.3142 | 850 | 0.0012 | - | | 0.3327 | 900 | 0.0016 | - | | 0.3512 | 950 | 0.0035 | - | | 0.3697 | 1000 | 0.0012 | - | | 0.3882 | 1050 | 0.0003 | - | | 0.4067 | 1100 | 0.001 | - | | 0.4251 | 1150 | 0.0025 | - | | 0.4436 | 1200 | 0.001 | - | | 0.4621 | 1250 | 0.0006 | - | | 0.4806 | 1300 | 0.0006 | - | | 0.4991 | 1350 | 0.0004 | - | | 0.5176 | 1400 | 0.0012 | - | | 0.5360 | 1450 | 0.0051 | - | | 0.5545 | 1500 | 0.0009 | - | | 0.5730 | 1550 | 0.0003 | - | | 0.5915 | 1600 | 0.0004 | - | | 0.6100 | 1650 | 0.0009 | - | | 0.6285 | 1700 | 0.0002 | - | | 0.6470 | 1750 | 0.0003 | - | | 0.6654 | 1800 | 0.0005 | - | | 0.6839 | 1850 | 0.0003 | - | | 0.7024 | 1900 | 0.0003 | - | | 0.7209 | 1950 | 0.0005 | - | | 0.7394 | 2000 | 0.0004 | - | | 0.7579 | 2050 | 0.0008 | - | | 0.7763 | 2100 | 0.0009 | - | | 0.7948 | 2150 | 0.0002 | - | | 0.8133 | 2200 | 0.0002 | - | | 0.8318 | 2250 | 0.0002 | - | | 0.8503 | 2300 | 0.0008 | - | | 0.8688 | 2350 | 0.0002 | - | | 0.8872 | 2400 | 0.0002 | - | | 0.9057 | 2450 | 0.0003 | - | | 0.9242 | 2500 | 0.0013 | - | | 0.9427 | 2550 | 0.0003 | - | | 0.9612 | 2600 | 0.0002 | - | | 0.9797 | 2650 | 0.0002 | - | | 0.9982 | 2700 | 0.0003 | - | | 1.0166 | 2750 | 0.0002 | - | | 1.0351 | 2800 | 0.0008 | - | | 1.0536 | 2850 | 0.0001 | - | | 1.0721 | 2900 | 0.0004 | - | | 1.0906 | 2950 | 0.0001 | - | | 1.1091 | 3000 | 0.0001 | - | | 1.1275 | 3050 | 0.0002 | - | | 1.1460 | 3100 | 0.0002 | - | | 1.1645 | 3150 | 0.0002 | - | | 1.1830 | 3200 | 0.0001 | - | | 1.2015 | 3250 | 0.0001 | - | | 1.2200 | 3300 | 0.0001 | - | | 1.2384 | 3350 | 0.0041 | - | | 1.2569 | 3400 | 0.0002 | - | | 1.2754 | 3450 | 0.0001 | - | | 1.2939 | 3500 | 0.0001 | - | | 1.3124 | 3550 | 0.0002 | - | | 1.3309 | 3600 | 0.0 | - | | 1.3494 | 3650 | 0.0001 | - | | 1.3678 | 3700 | 0.0001 | - | | 1.3863 | 3750 | 0.0002 | - | | 1.4048 | 3800 | 0.0001 | - | | 1.4233 | 3850 | 0.0 | - | | 1.4418 | 3900 | 0.0001 | - | | 1.4603 | 3950 | 0.0001 | - | | 1.4787 | 4000 | 0.0001 | - | | 1.4972 | 4050 | 0.0001 | - | | 1.5157 | 4100 | 0.0001 | - | | 1.5342 | 4150 | 0.0001 | - | | 1.5527 | 4200 | 0.0001 | - | | 1.5712 | 4250 | 0.0001 | - | | 1.5896 | 4300 | 0.0001 | - | | 1.6081 | 4350 | 0.0 | - | | 1.6266 | 4400 | 0.0001 | - | | 1.6451 | 4450 | 0.0019 | - | | 1.6636 | 4500 | 0.0001 | - | | 1.6821 | 4550 | 0.0003 | - | | 1.7006 | 4600 | 0.0002 | - | | 1.7190 | 4650 | 0.0001 | - | | 1.7375 | 4700 | 0.0001 | - | | 1.7560 | 4750 | 0.0002 | - | | 1.7745 | 4800 | 0.0001 | - | | 1.7930 | 4850 | 0.0001 | - | | 1.8115 | 4900 | 0.0003 | - | | 1.8299 | 4950 | 0.056 | - | | 1.8484 | 5000 | 0.0001 | - | | 1.8669 | 5050 | 0.0001 | - | | 1.8854 | 5100 | 0.0001 | - | | 1.9039 | 5150 | 0.0001 | - | | 1.9224 | 5200 | 0.0 | - | | 1.9409 | 5250 | 0.0001 | - | | 1.9593 | 5300 | 0.0001 | - | | 1.9778 | 5350 | 0.0001 | - | | 1.9963 | 5400 | 0.0002 | - | | 2.0148 | 5450 | 0.0 | - | | 2.0333 | 5500 | 0.0001 | - | | 2.0518 | 5550 | 0.0 | - | | 2.0702 | 5600 | 0.0004 | - | | 2.0887 | 5650 | 0.0001 | - | | 2.1072 | 5700 | 0.0001 | - | | 2.1257 | 5750 | 0.0001 | - | | 2.1442 | 5800 | 0.0001 | - | | 2.1627 | 5850 | 0.0001 | - | | 2.1811 | 5900 | 0.0 | - | | 2.1996 | 5950 | 0.0001 | - | | 2.2181 | 6000 | 0.0001 | - | | 2.2366 | 6050 | 0.0001 | - | | 2.2551 | 6100 | 0.0001 | - | | 2.2736 | 6150 | 0.0001 | - | | 2.2921 | 6200 | 0.0 | - | | 2.3105 | 6250 | 0.0001 | - | | 2.3290 | 6300 | 0.0 | - | | 2.3475 | 6350 | 0.0001 | - | | 2.3660 | 6400 | 0.0001 | - | | 2.3845 | 6450 | 0.0001 | - | | 2.4030 | 6500 | 0.0 | - | | 2.4214 | 6550 | 0.0001 | - | | 2.4399 | 6600 | 0.0001 | - | | 2.4584 | 6650 | 0.0 | - | | 2.4769 | 6700 | 0.0 | - | | 2.4954 | 6750 | 0.0002 | - | | 2.5139 | 6800 | 0.0001 | - | | 2.5323 | 6850 | 0.0001 | - | | 2.5508 | 6900 | 0.0001 | - | | 2.5693 | 6950 | 0.0001 | - | | 2.5878 | 7000 | 0.0 | - | | 2.6063 | 7050 | 0.0001 | - | | 2.6248 | 7100 | 0.0001 | - | | 2.6433 | 7150 | 0.0001 | - | | 2.6617 | 7200 | 0.0001 | - | | 2.6802 | 7250 | 0.0001 | - | | 2.6987 | 7300 | 0.0003 | - | | 2.7172 | 7350 | 0.0001 | - | | 2.7357 | 7400 | 0.0 | - | | 2.7542 | 7450 | 0.0 | - | | 2.7726 | 7500 | 0.0 | - | | 2.7911 | 7550 | 0.0001 | - | | 2.8096 | 7600 | 0.0001 | - | | 2.8281 | 7650 | 0.0001 | - | | 2.8466 | 7700 | 0.0001 | - | | 2.8651 | 7750 | 0.0001 | - | | 2.8835 | 7800 | 0.0001 | - | | 2.9020 | 7850 | 0.0001 | - | | 2.9205 | 7900 | 0.0002 | - | | 2.9390 | 7950 | 0.0001 | - | | 2.9575 | 8000 | 0.0 | - | | 2.9760 | 8050 | 0.0 | - | | 2.9945 | 8100 | 0.0001 | - | | 0.0004 | 1 | 0.0001 | - | | 0.0185 | 50 | 0.0001 | - | | 0.0370 | 100 | 0.0001 | - | | 0.0555 | 150 | 0.0001 | - | | 0.0739 | 200 | 0.0001 | - | | 0.0924 | 250 | 0.0001 | - | | 0.1109 | 300 | 0.0001 | - | | 0.1294 | 350 | 0.0001 | - | | 0.1479 | 400 | 0.0001 | - | | 0.1664 | 450 | 0.0005 | - | | 0.1848 | 500 | 0.0007 | - | | 0.2033 | 550 | 0.0003 | - | | 0.2218 | 600 | 0.0003 | - | | 0.2403 | 650 | 0.0 | - | | 0.2588 | 700 | 0.0001 | - | | 0.2773 | 750 | 0.0001 | - | | 0.2957 | 800 | 0.0002 | - | | 0.3142 | 850 | 0.0 | - | | 0.3327 | 900 | 0.0001 | - | | 0.3512 | 950 | 0.0044 | - | | 0.3697 | 1000 | 0.0001 | - | | 0.3882 | 1050 | 0.0004 | - | | 0.4067 | 1100 | 0.0006 | - | | 0.4251 | 1150 | 0.0012 | - | | 0.4436 | 1200 | 0.0002 | - | | 0.4621 | 1250 | 0.0001 | - | | 0.4806 | 1300 | 0.0 | - | | 0.4991 | 1350 | 0.0001 | - | | 0.5176 | 1400 | 0.0003 | - | | 0.5360 | 1450 | 0.0001 | - | | 0.5545 | 1500 | 0.0001 | - | | 0.5730 | 1550 | 0.0002 | - | | 0.5915 | 1600 | 0.0001 | - | | 0.6100 | 1650 | 0.0002 | - | | 0.6285 | 1700 | 0.0 | - | | 0.6470 | 1750 | 0.0001 | - | | 0.6654 | 1800 | 0.0001 | - | | 0.6839 | 1850 | 0.0001 | - | | 0.7024 | 1900 | 0.0001 | - | | 0.7209 | 1950 | 0.0017 | - | | 0.7394 | 2000 | 0.0001 | - | | 0.7579 | 2050 | 0.0002 | - | | 0.7763 | 2100 | 0.0002 | - | | 0.7948 | 2150 | 0.0003 | - | | 0.8133 | 2200 | 0.0001 | - | | 0.8318 | 2250 | 0.0001 | - | | 0.8503 | 2300 | 0.0002 | - | | 0.8688 | 2350 | 0.0 | - | | 0.8872 | 2400 | 0.0001 | - | | 0.9057 | 2450 | 0.0001 | - | | 0.9242 | 2500 | 0.0002 | - | | 0.9427 | 2550 | 0.0001 | - | | 0.9612 | 2600 | 0.0 | - | | 0.9797 | 2650 | 0.0 | - | | 0.9982 | 2700 | 0.0001 | - | | 1.0166 | 2750 | 0.0001 | - | | 1.0351 | 2800 | 0.0001 | - | | 1.0536 | 2850 | 0.0 | - | | 1.0721 | 2900 | 0.0 | - | | 1.0906 | 2950 | 0.0001 | - | | 1.1091 | 3000 | 0.0 | - | | 1.1275 | 3050 | 0.0001 | - | | 1.1460 | 3100 | 0.0001 | - | | 1.1645 | 3150 | 0.0 | - | | 1.1830 | 3200 | 0.0 | - | | 1.2015 | 3250 | 0.0 | - | | 1.2200 | 3300 | 0.0 | - | | 1.2384 | 3350 | 0.0002 | - | | 1.2569 | 3400 | 0.0001 | - | | 1.2754 | 3450 | 0.0 | - | | 1.2939 | 3500 | 0.0001 | - | | 1.3124 | 3550 | 0.0001 | - | | 1.3309 | 3600 | 0.0 | - | | 1.3494 | 3650 | 0.0 | - | | 1.3678 | 3700 | 0.0 | - | | 1.3863 | 3750 | 0.0001 | - | | 1.4048 | 3800 | 0.0 | - | | 1.4233 | 3850 | 0.0 | - | | 1.4418 | 3900 | 0.0 | - | | 1.4603 | 3950 | 0.0 | - | | 1.4787 | 4000 | 0.0001 | - | | 1.4972 | 4050 | 0.0 | - | | 1.5157 | 4100 | 0.0 | - | | 1.5342 | 4150 | 0.0 | - | | 1.5527 | 4200 | 0.0001 | - | | 1.5712 | 4250 | 0.0001 | - | | 1.5896 | 4300 | 0.0 | - | | 1.6081 | 4350 | 0.0 | - | | 1.6266 | 4400 | 0.0001 | - | | 1.6451 | 4450 | 0.0 | - | | 1.6636 | 4500 | 0.0001 | - | | 1.6821 | 4550 | 0.0001 | - | | 1.7006 | 4600 | 0.0001 | - | | 1.7190 | 4650 | 0.0 | - | | 1.7375 | 4700 | 0.0 | - | | 1.7560 | 4750 | 0.0 | - | | 1.7745 | 4800 | 0.0 | - | | 1.7930 | 4850 | 0.0001 | - | | 1.8115 | 4900 | 0.0001 | - | | 1.8299 | 4950 | 0.0 | - | | 1.8484 | 5000 | 0.0001 | - | | 1.8669 | 5050 | 0.0 | - | | 1.8854 | 5100 | 0.0 | - | | 1.9039 | 5150 | 0.0 | - | | 1.9224 | 5200 | 0.0 | - | | 1.9409 | 5250 | 0.0 | - | | 1.9593 | 5300 | 0.0 | - | | 1.9778 | 5350 | 0.0 | - | | 1.9963 | 5400 | 0.0 | - | | 2.0148 | 5450 | 0.0 | - | | 2.0333 | 5500 | 0.0 | - | | 2.0518 | 5550 | 0.0 | - | | 2.0702 | 5600 | 0.0001 | - | | 2.0887 | 5650 | 0.0 | - | | 2.1072 | 5700 | 0.0 | - | | 2.1257 | 5750 | 0.0 | - | | 2.1442 | 5800 | 0.0 | - | | 2.1627 | 5850 | 0.0001 | - | | 2.1811 | 5900 | 0.0 | - | | 2.1996 | 5950 | 0.0 | - | | 2.2181 | 6000 | 0.0 | - | | 2.2366 | 6050 | 0.0 | - | | 2.2551 | 6100 | 0.0 | - | | 2.2736 | 6150 | 0.0001 | - | | 2.2921 | 6200 | 0.0 | - | | 2.3105 | 6250 | 0.0 | - | | 2.3290 | 6300 | 0.0 | - | | 2.3475 | 6350 | 0.0 | - | | 2.3660 | 6400 | 0.0 | - | | 2.3845 | 6450 | 0.0 | - | | 2.4030 | 6500 | 0.0 | - | | 2.4214 | 6550 | 0.0 | - | | 2.4399 | 6600 | 0.0 | - | | 2.4584 | 6650 | 0.0 | - | | 2.4769 | 6700 | 0.0 | - | | 2.4954 | 6750 | 0.0001 | - | | 2.5139 | 6800 | 0.0001 | - | | 2.5323 | 6850 | 0.0 | - | | 2.5508 | 6900 | 0.0 | - | | 2.5693 | 6950 | 0.0 | - | | 2.5878 | 7000 | 0.0 | - | | 2.6063 | 7050 | 0.0 | - | | 2.6248 | 7100 | 0.0 | - | | 2.6433 | 7150 | 0.0001 | - | | 2.6617 | 7200 | 0.0 | - | | 2.6802 | 7250 | 0.0 | - | | 2.6987 | 7300 | 0.0001 | - | | 2.7172 | 7350 | 0.0 | - | | 2.7357 | 7400 | 0.0 | - | | 2.7542 | 7450 | 0.0 | - | | 2.7726 | 7500 | 0.0 | - | | 2.7911 | 7550 | 0.0 | - | | 2.8096 | 7600 | 0.0 | - | | 2.8281 | 7650 | 0.0 | - | | 2.8466 | 7700 | 0.0001 | - | | 2.8651 | 7750 | 0.0 | - | | 2.8835 | 7800 | 0.0001 | - | | 2.9020 | 7850 | 0.0 | - | | 2.9205 | 7900 | 0.0001 | - | | 2.9390 | 7950 | 0.0001 | - | | 2.9575 | 8000 | 0.0 | - | | 2.9760 | 8050 | 0.0 | - | | 2.9945 | 8100 | 0.0 | - | | 0.0004 | 1 | 0.0 | - | | 0.0185 | 50 | 0.0 | - | | 0.0370 | 100 | 0.0 | - | | 0.0555 | 150 | 0.0 | - | | 0.0739 | 200 | 0.0 | - | | 0.0924 | 250 | 0.0 | - | | 0.1109 | 300 | 0.0 | - | | 0.1294 | 350 | 0.0005 | - | | 0.1479 | 400 | 0.0002 | - | | 0.1664 | 450 | 0.0001 | - | | 0.1848 | 500 | 0.0009 | - | | 0.2033 | 550 | 0.1068 | - | | 0.2218 | 600 | 0.0 | - | | 0.2403 | 650 | 0.0 | - | | 0.2588 | 700 | 0.0 | - | | 0.2773 | 750 | 0.0374 | - | | 0.2957 | 800 | 0.0001 | - | | 0.3142 | 850 | 0.0 | - | | 0.3327 | 900 | 0.0 | - | | 0.3512 | 950 | 0.0 | - | | 0.3697 | 1000 | 0.0001 | - | | 0.3882 | 1050 | 0.0 | - | | 0.4067 | 1100 | 0.0001 | - | | 0.4251 | 1150 | 0.0002 | - | | 0.4436 | 1200 | 0.0001 | - | | 0.4621 | 1250 | 0.0012 | - | | 0.4806 | 1300 | 0.0 | - | | 0.4991 | 1350 | 0.0001 | - | | 0.5176 | 1400 | 0.0001 | - | | 0.5360 | 1450 | 0.0 | - | | 0.5545 | 1500 | 0.0001 | - | | 0.5730 | 1550 | 0.0 | - | | 0.5915 | 1600 | 0.0267 | - | | 0.6100 | 1650 | 0.0001 | - | | 0.6285 | 1700 | 0.0 | - | | 0.6470 | 1750 | 0.0 | - | | 0.6654 | 1800 | 0.0 | - | | 0.6839 | 1850 | 0.0 | - | | 0.7024 | 1900 | 0.0 | - | | 0.7209 | 1950 | 0.0 | - | | 0.7394 | 2000 | 0.0 | - | | 0.7579 | 2050 | 0.0001 | - | | 0.7763 | 2100 | 0.0 | - | | 0.7948 | 2150 | 0.0001 | - | | 0.8133 | 2200 | 0.0001 | - | | 0.8318 | 2250 | 0.0 | - | | 0.8503 | 2300 | 0.0001 | - | | 0.8688 | 2350 | 0.1116 | - | | 0.8872 | 2400 | 0.0042 | - | | 0.9057 | 2450 | 0.0001 | - | | 0.9242 | 2500 | 0.0006 | - | | 0.9427 | 2550 | 0.0 | - | | 0.9612 | 2600 | 0.0615 | - | | 0.9797 | 2650 | 0.0002 | - | | 0.9982 | 2700 | 0.0 | - | | 1.0166 | 2750 | 0.0003 | - | | 1.0351 | 2800 | 0.0001 | - | | 1.0536 | 2850 | 0.0 | - | | 1.0721 | 2900 | 0.0 | - | | 1.0906 | 2950 | 0.0 | - | | 1.1091 | 3000 | 0.0 | - | | 1.1275 | 3050 | 0.0001 | - | | 1.1460 | 3100 | 0.0 | - | | 1.1645 | 3150 | 0.0 | - | | 1.1830 | 3200 | 0.0 | - | | 1.2015 | 3250 | 0.0 | - | | 1.2200 | 3300 | 0.0 | - | | 1.2384 | 3350 | 0.0 | - | | 1.2569 | 3400 | 0.0 | - | | 1.2754 | 3450 | 0.0 | - | | 1.2939 | 3500 | 0.0 | - | | 1.3124 | 3550 | 0.0 | - | | 1.3309 | 3600 | 0.0 | - | | 1.3494 | 3650 | 0.0 | - | | 1.3678 | 3700 | 0.0 | - | | 1.3863 | 3750 | 0.0 | - | | 1.4048 | 3800 | 0.0003 | - | | 1.4233 | 3850 | 0.0 | - | | 1.4418 | 3900 | 0.0001 | - | | 1.4603 | 3950 | 0.0 | - | | 1.4787 | 4000 | 0.0001 | - | | 1.4972 | 4050 | 0.0 | - | | 1.5157 | 4100 | 0.0 | - | | 1.5342 | 4150 | 0.0 | - | | 1.5527 | 4200 | 0.0 | - | | 1.5712 | 4250 | 0.0 | - | | 1.5896 | 4300 | 0.0 | - | | 1.6081 | 4350 | 0.0 | - | | 1.6266 | 4400 | 0.0 | - | | 1.6451 | 4450 | 0.0 | - | | 1.6636 | 4500 | 0.0 | - | | 1.6821 | 4550 | 0.0001 | - | | 1.7006 | 4600 | 0.0 | - | | 1.7190 | 4650 | 0.0 | - | | 1.7375 | 4700 | 0.0 | - | | 1.7560 | 4750 | 0.0 | - | | 1.7745 | 4800 | 0.0 | - | | 1.7930 | 4850 | 0.0 | - | | 1.8115 | 4900 | 0.0 | - | | 1.8299 | 4950 | 0.0 | - | | 1.8484 | 5000 | 0.0 | - | | 1.8669 | 5050 | 0.0 | - | | 1.8854 | 5100 | 0.0 | - | | 1.9039 | 5150 | 0.0 | - | | 1.9224 | 5200 | 0.0 | - | | 1.9409 | 5250 | 0.0 | - | | 1.9593 | 5300 | 0.0 | - | | 1.9778 | 5350 | 0.0 | - | | 1.9963 | 5400 | 0.0 | - | | 2.0148 | 5450 | 0.0 | - | | 2.0333 | 5500 | 0.0 | - | | 2.0518 | 5550 | 0.0 | - | | 2.0702 | 5600 | 0.0001 | - | | 2.0887 | 5650 | 0.0 | - | | 2.1072 | 5700 | 0.0 | - | | 2.1257 | 5750 | 0.0 | - | | 2.1442 | 5800 | 0.0001 | - | | 2.1627 | 5850 | 0.0 | - | | 2.1811 | 5900 | 0.0 | - | | 2.1996 | 5950 | 0.0 | - | | 2.2181 | 6000 | 0.0 | - | | 2.2366 | 6050 | 0.0 | - | | 2.2551 | 6100 | 0.0 | - | | 2.2736 | 6150 | 0.0 | - | | 2.2921 | 6200 | 0.0 | - | | 2.3105 | 6250 | 0.0 | - | | 2.3290 | 6300 | 0.0 | - | | 2.3475 | 6350 | 0.0 | - | | 2.3660 | 6400 | 0.0 | - | | 2.3845 | 6450 | 0.0 | - | | 2.4030 | 6500 | 0.0 | - | | 2.4214 | 6550 | 0.0 | - | | 2.4399 | 6600 | 0.0 | - | | 2.4584 | 6650 | 0.0 | - | | 2.4769 | 6700 | 0.0 | - | | 2.4954 | 6750 | 0.0 | - | | 2.5139 | 6800 | 0.0001 | - | | 2.5323 | 6850 | 0.0 | - | | 2.5508 | 6900 | 0.0 | - | | 2.5693 | 6950 | 0.0 | - | | 2.5878 | 7000 | 0.0 | - | | 2.6063 | 7050 | 0.0 | - | | 2.6248 | 7100 | 0.0 | - | | 2.6433 | 7150 | 0.0 | - | | 2.6617 | 7200 | 0.0 | - | | 2.6802 | 7250 | 0.0 | - | | 2.6987 | 7300 | 0.0 | - | | 2.7172 | 7350 | 0.0 | - | | 2.7357 | 7400 | 0.0 | - | | 2.7542 | 7450 | 0.0 | - | | 2.7726 | 7500 | 0.0 | - | | 2.7911 | 7550 | 0.0 | - | | 2.8096 | 7600 | 0.0 | - | | 2.8281 | 7650 | 0.0 | - | | 2.8466 | 7700 | 0.0 | - | | 2.8651 | 7750 | 0.0 | - | | 2.8835 | 7800 | 0.0 | - | | 2.9020 | 7850 | 0.0 | - | | 2.9205 | 7900 | 0.0 | - | | 2.9390 | 7950 | 0.0 | - | | 2.9575 | 8000 | 0.0 | - | | 2.9760 | 8050 | 0.0 | - | | 2.9945 | 8100 | 0.0 | - | ### Framework Versions - Python: 3.9.16 - SetFit: 1.0.1 - Sentence Transformers: 2.2.2 - Transformers: 4.35.0 - PyTorch: 2.1.0+cu121 - Datasets: 2.14.6 - Tokenizers: 0.14.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```