--- tags: - merge - mergekit - lazymergekit - mlabonne/OmniBeagle-7B - flemmingmiguel/MBX-7B-v3 - AiMavenAi/AiMaven-Prometheus base_model: - mlabonne/OmniBeagle-7B - flemmingmiguel/MBX-7B-v3 - AiMavenAi/AiMaven-Prometheus license: apache-2.0 --- # Edit: As of 2024-02-10 this is currently the best performing 7B model on both the Open-LLM-Leaderboard as well as this (Nous Benchmark) [Leaderboard](https://huggingface.co/spaces/CultriX/Alt_LLM_LeaderBoard) # NeuralTrix-7B-v1 NeuralTrix-7B-v1 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mlabonne/OmniBeagle-7B](https://huggingface.co/mlabonne/OmniBeagle-7B) * [flemmingmiguel/MBX-7B-v3](https://huggingface.co/flemmingmiguel/MBX-7B-v3) * [AiMavenAi/AiMaven-Prometheus](https://huggingface.co/AiMavenAi/AiMaven-Prometheus) ## 🧩 Configuration ```yaml models: - model: mistralai/Mistral-7B-v0.1 # no parameters necessary for base model - model: mlabonne/OmniBeagle-7B parameters: density: 0.65 weight: 0.4 - model: flemmingmiguel/MBX-7B-v3 parameters: density: 0.6 weight: 0.35 - model: AiMavenAi/AiMaven-Prometheus parameters: density: 0.6 weight: 0.35 merge_method: dare_ties base_model: mistralai/Mistral-7B-v0.1 parameters: int8_mask: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "CultriX/NeuralTrix-7B-v1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```