File size: 6,050 Bytes
1cde7e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import argparse
import os
import warnings
import mdtex2html
import gradio as gr

import re
pattern = re.compile("[\n]+")

import torch
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
from huggingface_hub import snapshot_download

from transformers.generation.utils import logger
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer


parser = argparse.ArgumentParser()
parser.add_argument("--model_name", default=f"DAMO-NLP-MT/polylm-chat-13b",
                    choices=["DAMO-NLP-MT/polylm-chat-13b"], type=str)
parser.add_argument("--gpu", default="0", type=str)
args = parser.parse_args()

os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
num_gpus = len(args.gpu.split(","))

if ('int8' in args.model_name or 'int4' in args.model_name) and num_gpus > 1:
    raise ValueError("Quantized models do not support model parallel. Please run on a single GPU (e.g., --gpu 0).")

logger.setLevel("ERROR")
warnings.filterwarnings("ignore")

model_path = args.model_name
if not os.path.exists(args.model_name):
    model_path = snapshot_download(args.model_name)

config = AutoConfig.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)

if num_gpus > 1:
    print("Waiting for all devices to be ready, it may take a few minutes...")
    with init_empty_weights():
        raw_model = AutoModelForCausalLM.from_config(config)
    raw_model.tie_weights()
    model = load_checkpoint_and_dispatch(
        raw_model, model_path, device_map="auto", no_split_module_classes=["GPT2Block"]
    )
else:
    print("Loading model files, it may take a few minutes...")
    model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).cuda()

print(model.dtype)

def postprocess(self, y):
    if y is None:
        return []
    for i, (message, response) in enumerate(y):
        y[i] = (
            None if message is None else mdtex2html.convert((message)),
            None if response is None else mdtex2html.convert(response),
        )
    return y


gr.Chatbot.postprocess = postprocess


def parse_text(text):
    """copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split('`')
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = f'<br></code></pre>'
        else:
            line = line.replace("`", "\`")
            line = line.replace("<", "&lt;")
            line = line.replace(">", "&gt;")
            line = line.replace(" ", "&nbsp;")
            line = line.replace("*", "&ast;")
            line = line.replace("_", "&lowbar;")
            line = line.replace("-", "&#45;")
            line = line.replace(".", "&#46;")
            line = line.replace("!", "&#33;")
            line = line.replace("(", "&#40;")
            line = line.replace(")", "&#41;")
            line = line.replace("$", "&#36;")
            if i > 0:
                lines[i] = "<br>"+line
    text = "".join(lines)
    return text


def predict(input, chatbot, max_length, top_p, temperature, history):
    query = input
    query = query.strip()

    chatbot.append((query, ""))
    prompt = ""
    for i, (old_query, response) in enumerate(history):
        response = response.strip()
        prompt += "<|user|>\n" + f"{old_query}\n" + "<|assistant|>\n" + f"{response}\n"
    prompt += "<|user|>\n" + f"{query}\n" + "<|assistant|>\n"
    inputs = tokenizer(prompt, return_tensors="pt")
    with torch.no_grad():
        outputs = model.generate(
            inputs.input_ids.cuda(),
            attention_mask=inputs.attention_mask.cuda(),
            max_length=max_length,
            do_sample=True,
            top_p=top_p,
            temperature=temperature,
            repetition_penalty=1.02,
            num_return_sequences=1,
            eos_token_id=2,
            early_stopping=True)
        response = tokenizer.decode(
            outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)

    chatbot[-1] = (parse_text(query), parse_text(response.replace("\n ", "\n")))
    history = history + [(query, response)]
    print("==========================================================================")
    print(f"chatbot is {chatbot}")
    print(f"history is {history}")
    print("==========================================================================")
    return chatbot, history


def reset_user_input():
    return gr.update(value='')


def reset_state():
    return [], []


with gr.Blocks() as demo:
    gr.HTML("""<h1 align="center">欢迎使用 PolyLM 多语言人工智能助手!</h1>""")

    chatbot = gr.Chatbot()
    with gr.Row():
        with gr.Column(scale=4):
            with gr.Column(scale=12):
                user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
                    container=False)
            with gr.Column(min_width=32, scale=1):
                submitBtn = gr.Button("Submit", variant="primary")
        with gr.Column(scale=1):
            emptyBtn = gr.Button("Clear History")
            max_length = gr.Slider(
                0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
            top_p = gr.Slider(0, 1, value=0.8, step=0.01,
                              label="Top P", interactive=True)
            temperature = gr.Slider(
                0, 1, value=0.7, step=0.01, label="Temperature", interactive=True)

    history = gr.State([])  # (message, bot_message)

    submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history], [chatbot, history],
                    show_progress=True)
    submitBtn.click(reset_user_input, [], [user_input])

    emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)

demo.queue().launch(share=False, inbrowser=True)