import argparse import os import warnings import mdtex2html import gradio as gr import re pattern = re.compile("[\n]+") import torch from accelerate import init_empty_weights, load_checkpoint_and_dispatch from huggingface_hub import snapshot_download from transformers.generation.utils import logger from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer parser = argparse.ArgumentParser() parser.add_argument("--model_name", default="DAMO-NLP-MT/polylm-multialpaca-13b", choices=["DAMO-NLP-MT/polylm-multialpaca-13b"], type=str) parser.add_argument("--gpu", default="0", type=str) args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu num_gpus = len(args.gpu.split(",")) if ('int8' in args.model_name or 'int4' in args.model_name) and num_gpus > 1: raise ValueError("Quantized models do not support model parallel. Please run on a single GPU (e.g., --gpu 0).") logger.setLevel("ERROR") warnings.filterwarnings("ignore") model_path = args.model_name if not os.path.exists(args.model_name): model_path = snapshot_download(args.model_name) config = AutoConfig.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) if num_gpus > 1: print("Waiting for all devices to be ready, it may take a few minutes...") with init_empty_weights(): raw_model = AutoModelForCausalLM.from_config(config) raw_model.tie_weights() model = load_checkpoint_and_dispatch( raw_model, model_path, device_map="auto", no_split_module_classes=["GPT2Block"] ) else: print("Loading model files, it may take a few minutes...") model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True).cuda() def postprocess(self, y): if y is None: return [] for i, (message, response) in enumerate(y): y[i] = ( None if message is None else mdtex2html.convert((message)), None if response is None else mdtex2html.convert(response), ) return y gr.Chatbot.postprocess = postprocess def parse_text(text): """copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/""" lines = text.split("\n") lines = [line for line in lines if line != ""] count = 0 for i, line in enumerate(lines): if "```" in line: count += 1 items = line.split('`') if count % 2 == 1: lines[i] = f'
'
else:
lines[i] = f'
'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "