File size: 2,886 Bytes
1b68aae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: apache-2.0
library_name: peft
tags:
- trl
- dpo
- generated_from_trainer
base_model: TheBloke/OpenHermes-2-Mistral-7B-GPTQ
model-index:
- name: openhermes-mistral-dpo-gptq
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# openhermes-mistral-dpo-gptq
This model is a fine-tuned version of [TheBloke/OpenHermes-2-Mistral-7B-GPTQ](https://huggingface.co/TheBloke/OpenHermes-2-Mistral-7B-GPTQ) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6780
- Rewards/chosen: 0.0314
- Rewards/rejected: -0.0026
- Rewards/accuracies: 0.6875
- Rewards/margins: 0.0340
- Logps/rejected: -157.6995
- Logps/chosen: -203.0707
- Logits/rejected: -2.3164
- Logits/chosen: -2.4209
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- training_steps: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6932 | 0.01 | 10 | 0.6910 | -0.0090 | -0.0070 | 0.25 | -0.0020 | -157.7437 | -203.4745 | -2.3168 | -2.4207 |
| 0.6905 | 0.01 | 20 | 0.6893 | -0.0028 | -0.0049 | 0.1875 | 0.0022 | -157.7232 | -203.4128 | -2.3159 | -2.4207 |
| 0.6802 | 0.01 | 30 | 0.6868 | 0.0121 | -0.0011 | 0.6875 | 0.0132 | -157.6847 | -203.2636 | -2.3163 | -2.4206 |
| 0.6872 | 0.02 | 40 | 0.6790 | 0.0245 | -0.0033 | 0.6875 | 0.0278 | -157.7068 | -203.1401 | -2.3163 | -2.4207 |
| 0.7024 | 0.03 | 50 | 0.6780 | 0.0314 | -0.0026 | 0.6875 | 0.0340 | -157.6995 | -203.0707 | -2.3164 | -2.4209 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.0.1+cu117
- Datasets 2.18.0
- Tokenizers 0.15.2 |