juungwon commited on
Commit
893647a
Β·
verified Β·
1 Parent(s): b1b90ad

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -166
README.md CHANGED
@@ -15,192 +15,82 @@ The **Llama-3-instruction-constructionsafety-layertuning** model is a fine-tuned
15
  Llama-3-instruction-constructionsafety-layertuning model is contined pretrained model based on beomi/Llama-3-KoEn-8B-Instruction-preview.
16
 
17
  The training was conducted based on the QA datasets and RAW data of Constrution Safety Guidelines provided by the Korea Ocuupational Safety and Health Agency(KOSHA).
18
- The training was conducted using full parameter tuning, utilizing 2xA100GPU(80GB). Approximately 11,000 data were used for the training process.
19
-
20
-
21
- ### Model Description
22
-
23
- <!-- Provide a longer summary of what this model is. -->
24
-
25
- This is the model card of a πŸ€— transformers model that has been pushed on the Hub. This model card has been automatically generated.
26
-
27
- - **Developed by:** [More Information Needed]
28
- - **Funded by [optional]:** [More Information Needed]
29
- - **Shared by [optional]:** [More Information Needed]
30
- - **Model type:** [More Information Needed]
31
- - **Language(s) (NLP):** [More Information Needed]
32
- - **License:** [More Information Needed]
33
- - **Finetuned from model [optional]:** [More Information Needed]
34
-
35
- ### Model Sources [optional]
36
-
37
- <!-- Provide the basic links for the model. -->
38
-
39
- - **Repository:** [More Information Needed]
40
- - **Paper [optional]:** [More Information Needed]
41
- - **Demo [optional]:** [More Information Needed]
42
 
43
- ## Uses
44
-
45
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
-
47
- ### Direct Use
48
-
49
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
-
51
- [More Information Needed]
52
-
53
- ### Downstream Use [optional]
54
 
55
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
 
57
- [More Information Needed]
58
 
59
- ### Out-of-Scope Use
60
 
61
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
62
 
63
- [More Information Needed]
 
 
 
 
 
 
64
 
65
- ## Bias, Risks, and Limitations
66
 
67
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
68
 
69
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
70
 
71
- ### Recommendations
 
72
 
73
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
74
 
75
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
 
77
- ## How to Get Started with the Model
78
 
79
- Use the code below to get started with the model.
80
 
81
- [More Information Needed]
82
 
83
- ## Training Details
84
 
85
  ### Training Data
86
-
87
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
 
89
- [More Information Needed]
90
-
91
- ### Training Procedure
92
-
93
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
-
95
- #### Preprocessing [optional]
96
-
97
- [More Information Needed]
98
-
99
-
100
- #### Training Hyperparameters
101
-
102
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
-
104
- #### Speeds, Sizes, Times [optional]
105
-
106
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
-
108
- [More Information Needed]
109
-
110
- ## Evaluation
111
-
112
- <!-- This section describes the evaluation protocols and provides the results. -->
113
-
114
- ### Testing Data, Factors & Metrics
115
-
116
- #### Testing Data
117
-
118
- <!-- This should link to a Dataset Card if possible. -->
119
-
120
- [More Information Needed]
121
-
122
- #### Factors
123
-
124
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
-
126
- [More Information Needed]
127
-
128
- #### Metrics
129
-
130
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
-
132
- [More Information Needed]
133
-
134
- ### Results
135
-
136
- [More Information Needed]
137
-
138
- #### Summary
139
-
140
-
141
-
142
- ## Model Examination [optional]
143
-
144
- <!-- Relevant interpretability work for the model goes here -->
145
-
146
- [More Information Needed]
147
-
148
- ## Environmental Impact
149
-
150
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
-
152
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
-
154
- - **Hardware Type:** [More Information Needed]
155
- - **Hours used:** [More Information Needed]
156
- - **Cloud Provider:** [More Information Needed]
157
- - **Compute Region:** [More Information Needed]
158
- - **Carbon Emitted:** [More Information Needed]
159
-
160
- ## Technical Specifications [optional]
161
-
162
- ### Model Architecture and Objective
163
-
164
- [More Information Needed]
165
-
166
- ### Compute Infrastructure
167
-
168
- [More Information Needed]
169
-
170
- #### Hardware
171
-
172
- [More Information Needed]
173
-
174
- #### Software
175
-
176
- [More Information Needed]
177
-
178
- ## Citation [optional]
179
-
180
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
 
182
  **BibTeX:**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183
 
184
- [More Information Needed]
185
-
186
- **APA:**
187
-
188
- [More Information Needed]
189
-
190
- ## Glossary [optional]
191
-
192
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
-
194
- [More Information Needed]
195
-
196
- ## More Information [optional]
197
-
198
- [More Information Needed]
199
-
200
- ## Model Card Authors [optional]
201
-
202
- [More Information Needed]
203
-
204
- ## Model Card Contact
205
-
206
- [More Information Needed]
 
15
  Llama-3-instruction-constructionsafety-layertuning model is contined pretrained model based on beomi/Llama-3-KoEn-8B-Instruction-preview.
16
 
17
  The training was conducted based on the QA datasets and RAW data of Constrution Safety Guidelines provided by the Korea Ocuupational Safety and Health Agency(KOSHA).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
+ The training was conducted using full parameter tuning, utilizing 2xA100GPU(80GB). Approximately 11,000 data were used for the training process.
 
 
 
 
 
 
 
 
 
 
20
 
21
+ After fine-tuning the entire layers, layers 0, 30, and 31 were replaced with parameters from the base model. This was done as a precautionary measure to prevent errors resulting from training on raw data.
22
 
 
23
 
24
+ ## Simple Use
25
 
26
+ ```
27
+ import torch
28
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
29
 
30
+ model_name = "juungwon/Llama-3-instruction-constructionsafety-layertuning"
31
+ tuned_model = AutoModelForCausalLM.from_pretrained(
32
+ model_name,
33
+ token=access_token,
34
+ torch_dtype="auto",
35
+ device_map="auto",
36
+ )
37
 
38
+ tokenizer = AutoTokenizer.from_pretrained(model_name, token=access_token)
39
 
40
+ tokenizer.pad_token = tokenizer.eos_token
41
+ pipe = pipeline("text-generation", model=tuned_model, tokenizer = tokenizer, torch_dtype=torch.bfloat16, device_map="auto")
42
 
43
+ # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
44
+ messages = [
45
+ {
46
+ "role": "system",
47
+ "content": "μΉœμ ˆν•œ κ±΄μ„€μ•ˆμ „μ „λ¬Έκ°€λ‘œμ„œ μƒλŒ€λ°©μ˜ μš”μ²­μ— μ΅œλŒ€ν•œ 'μžμ„Έν•˜κ³ ' μΉœμ ˆν•˜κ²Œ λ‹΅ν•˜μž. λͺ¨λ“  λŒ€λ‹΅μ€ ν•œκ΅­μ–΄(Korean)으둜 λŒ€λ‹΅ν•΄μ€˜.",
48
+ },
49
+ {"role": "user", "content": "흙막이 κ°€μ‹œμ„€ κ³΅μ‚¬μ‹œ μž‘μ—…μž μ•ˆμ „μ‘°μΉ˜μ— λŒ€ν•΄μ„œ 10가지 정도 μ•Œλ €μ£Όμ„Έμš”."},
50
+ ]
51
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
52
+ outputs = pipe(prompt, max_new_tokens=1024, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
53
+ print(outputs[0]["generated_text"])
54
 
55
+ ```
56
+ ## Output
57
 
58
+ ```
59
+ <|begin_of_text|><|start_header_id|>system<|end_header_id|>
60
 
61
+ μΉœμ ˆν•œ κ±΄μ„€μ•ˆμ „μ „λ¬Έκ°€λ‘œμ„œ μƒλŒ€λ°©μ˜ μš”μ²­μ— μ΅œλŒ€ν•œ 'μžμ„Έν•˜κ³ ' μΉœμ ˆν•˜κ²Œ λ‹΅ν•˜μž. λͺ¨λ“  λŒ€λ‹΅μ€ ν•œκ΅­μ–΄(Korean)으둜 λŒ€λ‹΅ν•΄μ€˜.<|eot_id|><|start_header_id|>user<|end_header_id|>
62
 
63
+ 흙막이 κ°€μ‹œμ„€ κ³΅μ‚¬μ‹œ μž‘μ—…μž μ•ˆμ „μ‘°μΉ˜μ— λŒ€ν•΄μ„œ 10가지 정도 μ•Œλ €μ£Όμ„Έμš”.<|eot_id|><|start_header_id|>assistant<|end_header_id|>
64
 
65
+ 1. 곡사 μ€‘μ—λŠ” ν˜„μž₯사무싀을 μ„€μΉ˜ν•˜μ—¬ 곡사관련 기둝, μž‘μ—…μ§€νœ˜, μž‘μ—…μž λŒ€κΈ°, μ•ˆμ „κ΅μœ‘, μ•ˆμ „μ κ²€ λ“±μ˜ 업무λ₯Ό μˆ˜ν–‰ν•  수 μžˆμ–΄μ•Ό ν•œλ‹€. 2. 곡사 μ „Β·ν›„μ—λŠ” μ£Όλ³€μ˜ μ§€λ°˜μΉ¨ν•˜, μ§€ν•˜μˆ˜μœ„, μ§€ν•˜ 맀섀물, μ§€ν‘œλ©΄μ˜ 이완, μ§€λ°˜μ˜ 이완, μ§€ν‘œλ©΄μ˜ κ· μ—΄, λ…Έλ©΄μ˜ 이상 유무, λ„λ‘œ μ‹œμ„€λ¬Ό λ“±μ˜ 이상 유무λ₯Ό ν™•μΈν•˜μ—¬μ•Ό ν•œλ‹€. 3. μ„€κ³„λ„μ„œ, μ‹œλ°©μ„œ, μ•ˆμ „λ³΄κ±΄κ·œμΉ™, μ•ˆμ „λ³΄κ±΄κ·œμΉ™ 및 κ΄€λ ¨λ²•κ·œ, μ•ˆμ „λ³΄κ±΄κ·œμΉ™κ³Ό κ΄€λ ¨λœ 지침, μ‚°μ—…μ•ˆμ „λ³΄κ±΄κΈ°μ€€μ— κ΄€ν•œ κ·œμΉ™μ„ κ²€ν† ν•˜μ—¬ μ•ˆμ „λŒ€μ±…μ„ μˆ˜λ¦½ν•˜μ—¬μ•Ό ν•œλ‹€. 4. 흙막이 κ°€μ‹œμ„€ 곡사 μ‹œμ—λŠ” μž‘μ—…μžμ˜ 좔락방지λ₯Ό μœ„ν•˜μ—¬ μ•ˆμ „λŒ€, μ•ˆμ „λͺ¨, μ•ˆμ „ν™” λ“± 개인보호ꡬλ₯Ό μ°©μš©ν•˜μ—¬μ•Ό ν•œλ‹€. 5. 흙막이 κ°€μ‹œμ„€ 곡사 μ‹œμ—λŠ” κ·Όκ³¨κ²©κ³„μ§ˆν™˜ μ˜ˆλ°©μ„ μœ„ν•˜μ—¬ μ μ ˆν•œ νœ΄μ‹μ‹œκ°„μ„ μ œκ³΅ν•˜μ—¬μ•Ό ν•œλ‹€. 6. 흙막이 κ°€μ‹œμ„€ 곡사 μ‹œμ—λŠ” μž‘μ—…μžμ˜ 건강관리λ₯Ό μœ„ν•˜μ—¬ μž‘μ—…ν™˜κ²½μ„ κ°œμ„ ν•˜κ³  μ μ ˆν•œ νœ΄μ‹κ³΅κ°„μ„ λ§ˆλ ¨ν•˜μ—¬μ•Ό ν•œλ‹€. 7. 흙막이 κ°€μ‹œμ„€ 곡사 μ‹œμ—λŠ” μž‘μ—…μžμ˜ μ‚°μ—…μž¬ν•΄ μ˜ˆλ°©μ„ μœ„ν•˜μ—¬ μ•ˆμ „κ΅μœ‘, μ•ˆμ „μ‹œμ„€, μ•ˆμ „μž₯λΉ„λ₯Ό λ§ˆλ ¨ν•˜μ—¬μ•Ό ν•œλ‹€. 8. 흙막이 κ°€μ‹œμ„€ 곡사 μ‹œμ—λŠ” μž‘μ—…μžμ˜ μ•ˆμ „μ„ μœ„ν•˜μ—¬ μ•ˆμ „μž‘μ—…κ³„νšμ„ μˆ˜λ¦½ν•˜μ—¬μ•Ό ν•œλ‹€. 9. 흙막이 κ°€μ‹œμ„€ 곡사 μ‹œμ—λŠ” μž‘μ—…μžμ˜ μ•ˆμ „μ„ μœ„ν•˜μ—¬ ν† μ§ˆ, μ§€ν•˜μˆ˜μœ„, ν† μΈ΅, 맀섀물, 인접ꡬ쑰물, μ§€ν•˜μˆ˜μœ„, μ§€ν‘œλ©΄μ˜ 이상 유무, λ„λ‘œ μ‹œμ„€λ¬Ό λ“±μ˜ 이상 유무λ₯Ό ν™•μΈν•˜μ—¬μ•Ό ν•œλ‹€. 10. 흙막이 κ°€μ‹œμ„€ 곡사 μ‹œμ—λŠ” μž‘μ—…μžμ˜ μ•ˆμ „μ„ μœ„ν•˜μ—¬ μž‘μ—…μž 1인당 1개의 μ•ˆμ „λͺ¨, μ•ˆμ „ν™”, μ•ˆμ „λŒ€ λ“± 개인보호ꡬλ₯Ό μ°©μš©ν•˜μ—¬μ•Ό ν•œλ‹€.
66
 
67
+ ```
68
 
 
69
 
70
  ### Training Data
71
+ Training Data will be provided upon requests.
72
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
  **BibTeX:**
76
+ @article{llama3cs-layertuning,
77
+ title={Llama-3-instruction-constructionsafety-layertuning},
78
+ author={L, Jungwon, A, Seungjun},
79
+ year={2024},
80
+ url={https://huggingface.co/juungwon/Llama-3-instruction-constructionsafety-layertuning}
81
+ }
82
+
83
+ @article{llama3koen,
84
+ title={Llama-3-KoEn},
85
+ author={L, Junbum},
86
+ year={2024},
87
+ url={https://huggingface.co/beomi/Llama-3-KoEn-8B}
88
+ }
89
+
90
+ @article{llama3modelcard,
91
+ title={Llama 3 Model Card},
92
+ author={AI@Meta},
93
+ year={2024},
94
+ url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
95
+ }
96