DBusAI commited on
Commit
b70b7f9
1 Parent(s): a8fad73

Retrain DQN model for MountainCar-v0 v0

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
DQN-MountainCar-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:170247ea32346330b3238ae1e278ecf9d2da858b754f5cd8d7578f03baf9f2b5
3
+ size 1102967
DQN-MountainCar-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
DQN-MountainCar-v0/data ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function DQNPolicy.__init__ at 0x7f36b2857320>",
8
+ "_build": "<function DQNPolicy._build at 0x7f36b28573b0>",
9
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7f36b2857440>",
10
+ "forward": "<function DQNPolicy.forward at 0x7f36b28574d0>",
11
+ "_predict": "<function DQNPolicy._predict at 0x7f36b2857560>",
12
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f36b28575f0>",
13
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f36b2857680>",
14
+ "__abstractmethods__": "frozenset()",
15
+ "_abc_impl": "<_abc_data object at 0x7f36b284f3f0>"
16
+ },
17
+ "verbose": 1,
18
+ "policy_kwargs": {
19
+ "net_arch": [
20
+ 256,
21
+ 256
22
+ ]
23
+ },
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 2
30
+ ],
31
+ "low": "[-1.2 -0.07]",
32
+ "high": "[0.6 0.07]",
33
+ "bounded_below": "[ True True]",
34
+ "bounded_above": "[ True True]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAHKv69Ig5R9Xarcua3G7nVm8iqLZ+7wjodgUsrWUoQOUQZLmpzmLfntwhBpQB2mV5xsLwVSaHYV/FpVJUi6Z/zjcUdJoCm1kQD3imvoR+SClSzsuDMpkQdDHI9Ts6ZbawRDU0FLeovuT+aDr9rzyAqjIuDYjjDOYDOjnpZubqdiAsW4sS5LKKtP954AaPKqoMMYLZSfQKUqfMWUI3KjMhcm+GGphVcIwED4zGZnKy6PzYE+D3WD9NTc/TmlYeMkzEOPs/bwiXPQPwd20uXPPeYkW3IoPqWEBCa+hE2pTcYQaCHw58i9d/LrBnB3/mWpzf/BsRvXnwti2dHiQn0paIE3iz4l8GZrT7DsPFiWRVi4E1G4Krr8ZXaDrJEsz8wPhQx1x1mPayF6kTXDkVqinlD43sZxiUI9oW0EyqQOPIvsm4GJDb1W7n5FhQKiALk1wx4muEU/an44eU6mB1crWKM2Qe9/FT8JwnNHQrr22xfWCjq31dY2X+B00VEU3xtEih9UKm1dMVnkZ/qGOGBzlv+7hDGiuj93YKJcn42R3j4MBJZKgDiqU5szyk+b9JWmxuP8P3heNEtYiEwj2e8INvI6BMjBRGfGnFCE1ULld7UBn9izliFh7WR6+gLKdTRu4upNbreXRvNHG1m0M6n67LoV1iWq7aKjG0sq09CaV0isfUs3Uf3Eu8vaafg5btulJlN1LX/Fk5iHGXqLoN8z1C7avrqhXpuRf0jYluKutwV555aOnCnFCJhIZraz1Jdi0gQK9ijmD7uj2I34LvFezx/HEc/oKW1Fhr2VS3uedcmo2BRBQuEUVXtPAcodko6sTSDv2pzoEEs1sLBV9dowT3vJMHQDyD5uaXucoJEV7vSvGsN1Zwp0botseQrPY8/NMcy7vAtvhpfSNbXE5tvzWrryWU5uOkaP2238RaceK3PmyNoe9Q50Dbc7GqtCAO4zJlDqO2PfPRtNL5UTT9wc1GPFYujTBoeBQryDyzFunHigDbm5MXJkX/Odj+5KYB672lJBqEgZAppvNjvmyctQo/YvAzbDdvOfySpvQqeCA6CYpOQi1hDRpOmc9uM4dqu/9RtMCEdamwpKxQFf/Gn3UV1jkHgRAgSb6yIY8zjPPhJvu04jbiU7fi4OYtasc8C0ARpbjgkyJu/fkICfJBmNDRdMgxIKBeC7TP8uM9YGn+34x84VUmBFllv8Vm6UabuVBuQrZeUZYxIqadtS7teoKl+a45jrBfq8IhrOLU3e5mFmDwmZnAcvBdej7Il7ldHldSYE0ChMUjuBfimpbYeLB/wmfw/eNy5XQfxuelTX3dLMEkifVFj5VDsm7FDciW5USTUh5p0qwjIYsFuPVqMbCvBHFzAqwSUgj4Z4p50TBJnQTEv3kmvwvY+2kuKaPLUFQKIdXv2yu8Hcr6jR54ypj/wrB79WgJBqKmYdzxpFpvWrVNWmP6d2TmI6o4gqe/fCfpyG05vQzf7YG2Wakh523+9zLtVOG1k8l6NU5l5k2s+7wadujyLSh0bQFHkC2PnY+k+ifJQsji4cmAnDz6ee9pBEsbZ+EKLO6pCvdGgQ6WB8OdPXfSi6I32EyxoxJG3wqQZA90G+NlzTQHR+OZbhVxCWEx61GGpVoWAad7jWNll7iX6mG9AsPWpc5E0O+6OrWDkBuwIU9wY32CMlme07ZJS57t3jymL+qjX/wbNjLREc02SSh6R375WcZsP7tyjBZ3eRgaOkouoDnziubaaKDiUmyreGjEwOskiTIJjItt54eac117nxZcD0qz5bRN4kcZ0pTFyNTQp39degARawgoMG1XydwB129qi6V3Hl3vgXqTOosFHBEAvSadfW3YmINjsSaj0HzukElwdsJZC91eVZS1vsdYSJ+HW3bTMHNtCrTnKMnmODIbvpDVruGsFfSB9+9BSoU3KfRmXKy8Mr9+kLyM7KrkBpjK94CNfPspFIZagSZsmlIG4Oj2h7eKNuOVU6vqe7sTOKd83ip7SXHS3tymgOH7sQgQ2vOzCOzHibRzzkKgf3/bhgWHkRL63KRxNvDi0SdDtIBChGHT9sZiB4MjcDnwLe2evnL5YmX1JVS4ZWjOwsbtYfgesovF0Apz8Ku7/TxYTzsmuBoOTzncolECPFGETUMikjOUOmODlrIXss5YjlnrElGA8U9S8CxBWnIwowwflaoci3iZZOy2ENAC87B1RZn+7/o7cEORVIPaEZbJrqe+L9xOZ2Jlv30wtb/teRPOrvQSd0l9v8Em/EMh4UsIF36CfOsRYNkl0VqUyYWdPnYJwHSEiYyVgqQaQDgvjlCZaUQTnxPkGMRcKMQ5WWCySxZQqGHxm6Ah94pcm4ZaCUSvSO6ATuvlx9pR7h00hBkDER4i1kt6aNpNs0mQDW/gBphD0gPk2Ao+IICURF+0bIsLR7GrSOjOlXwApWf74ne/cd5VlRaMtHDmX1lUXd0eZU0cyhsyILjGHeyUJ/VPLZmQ7nk5N+tEOeWvQsPB52KX5fxzcn4/f1PwbwPGiTNYqSnSjcelWLqlqi85OuAmgMomw+pFCVRUu4sISkXC4X8zlFhJ50ZZndl/vWRe5pD63d5B1XG4zI6C4RHD5CToY4czMsqb62uWVu/z6qYAZQ8mg5KxyoSycwsewldRpmQZ/VhuHuunuT0uv2simVvjUNXp0y69Hw/4yA4wMsJ+6Y0pxYgD9AwQb75BQOzYsfDiuRsQLPf9i/xEnihi2rBVvDzArp/bjWCPK3Vnmqf+YsC8PEUzMmyXfZ1OJxeX5un6+2Cy7jC39OCYI6fvbxO6WhmU7d7SMWWEATVsByYZYgiuICSkQuIRQPzsuNP0OyruUWzJWdwGv1fDDgV8/+REUnMnAhiWaGOQIWGuxlBvvok9ft8sQKg4Ah397zjXQKPNnUKLlGGGKpUXN0Ox+W5a+7keZ6ReTo9zomIow58M2gsUMidH9Agp6vyVecfe7Wmusb6uhaRHHvH1URaWPQoZo1bjrXWiBuPiIODrdgvJxSgpipERuAkx392OUvdFGA8JvYtgaHmxI8qgbej9i8fSmSVpZV4zYoaga69uicGj7uHMhupybzlcEYacQTr6zxKg8wdRBqNoru6Tqlbf9/YhOdonoZpA704s1xAc5sLQBRNV4jPmL1jnX6I0qXDqAmmXPu4vjr47tzj0GhtOQJOQeeHwp/aikxFaW1SD5i+EEIygm+5ux7yPF12Gi1C0JSnoMZJwBes2QPnJAMUDYuEEe8ICCfx/G9zDPkV7+O2/rO8RNKiopN40ynLF3EUlCjmyg8dr9yIIN3BRV0MQ2rDEoak6ApJyl25+/sbHlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RN6wF1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
40
+ "n": 3,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": "RandomState(MT19937)"
44
+ },
45
+ "n_envs": 1,
46
+ "num_timesteps": 107008,
47
+ "_total_timesteps": 107000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": 21121,
50
+ "action_noise": null,
51
+ "start_time": 1652293653.376172,
52
+ "learning_rate": 0.004,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9wYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAM3z775qTz68lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": {
67
+ ":type:": "<class 'numpy.ndarray'>",
68
+ ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAFIB6r5HzSW8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="
69
+ },
70
+ "_episode_num": 609,
71
+ "use_sde": false,
72
+ "sde_sample_freq": -1,
73
+ "_current_progress_remaining": -7.47663551401434e-05,
74
+ "ep_info_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwF0AAAAAAACMAWyUS3SMAXSUR0Bmjwz7/GVBdX2UKGgGR8BlYAAAAAAAaAdLq2gIR0BmmPzxwyZbdX2UKGgGR8BiAAAAAAAAaAdLkGgIR0BmoZ9uxbB5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BmrQAlv60qdX2UKGgGR8BlIAAAAAAAaAdLqWgIR0BmtrvgFX7tdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0BmvwNI9TxYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bmyx8F6iTMdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0Bm0i75Ec81dX2UKGgGR8BZQAAAAAAAaAdLZWgIR0Bm2CBkI5YHdX2UKGgGR8BhYAAAAAAAaAdLi2gIR0Bm4M0zj3mFdX2UKGgGR8BaAAAAAAAAaAdLaGgIR0Bm54bOu7pWdX2UKGgGR8BiQAAAAAAAaAdLkmgIR0Bm792TxG2DdX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0Bm+ADs+mm+dX2UKGgGR8BjgAAAAAAAaAdLnGgIR0BnANFrl/6PdX2UKGgGR8BjAAAAAAAAaAdLmGgIR0BnCPIlt0mudX2UKGgGR8BWQAAAAAAAaAdLWWgIR0BnDjYdyT6jdX2UKGgGR8BVgAAAAAAAaAdLVmgIR0BnEuYrrgO0dX2UKGgGR8BdgAAAAAAAaAdLdmgIR0BnGeOZLIxQdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BnIC5sj3VTdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0BnKGIGhVU/dX2UKGgGR8BkoAAAAAAAaAdLpWgIR0BnMgaDPGADdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0BnOFXPqs2fdX2UKGgGR8BXgAAAAAAAaAdLXmgIR0BnPbNliBoVdX2UKGgGR8BgIAAAAAAAaAdLgWgIR0BnRObqhUR4dX2UKGgGR8BjgAAAAAAAaAdLnGgIR0BnTafg75mAdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0BnU/VCojwAdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0BnXL9ETg2qdX2UKGgGR8BmIAAAAAAAaAdLsWgIR0BnakUCaJAMdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0BndW+M6zVudX2UKGgGR8BjgAAAAAAAaAdLnGgIR0Bnfk9+w1R+dX2UKGgGR8BeAAAAAAAAaAdLeGgIR0Bnhd2aDwpfdX2UKGgGR8BkgAAAAAAAaAdLpGgIR0Bnj6drftQbdX2UKGgGR8BhwAAAAAAAaAdLjmgIR0Bnl6gTRIBjdX2UKGgGR8BWQAAAAAAAaAdLWWgIR0BnnETtb9qDdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0BnpY/keZG8dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0BnrHdAPd2xdX2UKGgGR8BagAAAAAAAaAdLamgIR0Bnsh9qk/KRdX2UKGgGR8BWAAAAAAAAaAdLWGgIR0Bnt0wYcebNdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0BnwEAYHgP3dX2UKGgGR8BbgAAAAAAAaAdLbmgIR0Bnx24kNWludX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bn1B7LMcIadX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0Bn3Nhd+ocadX2UKGgGR8BkwAAAAAAAaAdLpmgIR0Bn5qMo+fRNdX2UKGgGR8BmIAAAAAAAaAdLsWgIR0Bn8GumrKeTdX2UKGgGR8BgYAAAAAAAaAdLg2gIR0Bn95ZQpF1CdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0Bn/c/nnuAqdX2UKGgGR8BloAAAAAAAaAdLrWgIR0BoB5n13+uOdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0BoD6R2bG3ndX2UKGgGR8BjIAAAAAAAaAdLmWgIR0BoGI46wMYudX2UKGgGR8BhwAAAAAAAaAdLjmgIR0BoIIjyFwkxdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0BoJ5UgjhUBdX2UKGgGR8BjAAAAAAAAaAdLmGgIR0BoL+03Ov+wdX2UKGgGR8BigAAAAAAAaAdLlGgIR0BoOBTjvNNbdX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0BoQxazNUwSdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0BoTGpXIU8FdX2UKGgGR8BYQAAAAAAAaAdLYWgIR0BoUiH/LkjpdX2UKGgGR8BioAAAAAAAaAdLlWgIR0BoWlIuoP07dX2UKGgGR8BmAAAAAAAAaAdLsGgIR0BoZUBCD28JdX2UKGgGR8BlgAAAAAAAaAdLrGgIR0Bobw5q/M4cdX2UKGgGR8BlwAAAAAAAaAdLrmgIR0BoeOyon8badX2UKGgGR8BjQAAAAAAAaAdLmmgIR0BogUJ2MbWFdX2UKGgGR8Bl4AAAAAAAaAdLr2gIR0BoiyWcBltkdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0Bok+RmseXBdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0BonAUpNKywdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bop7fWMCLddX2UKGgGR8BlQAAAAAAAaAdLqmgIR0BosRnOB19wdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0BoukC9ytFKdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0BownE2pAD8dX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0Bo0zGrCFbndX2UKGgGR8BkYAAAAAAAaAdLo2gIR0Bo3NLUTcqOdX2UKGgGR8BkIAAAAAAAaAdLoWgIR0Bo5d78ejmCdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bo8OepXIU8dX2UKGgGR8BoIAAAAAAAaAdLwWgIR0Bo/vIMjNY9dX2UKGgGR8BiIAAAAAAAaAdLkWgIR0BpC0iliz9kdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0BpFvTodMkAdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0BpIXechC+ldX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0BpKcSkCV8kdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0BpMrx5LRKIdX2UKGgGR8BVQAAAAAAAaAdLVWgIR0BpN4FcIJJHdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0BpQHEhq0tzdX2UKGgGR8BigAAAAAAAaAdLlGgIR0BpSKIznA6/dX2UKGgGR8BlAAAAAAAAaAdLqGgIR0BpUdaIN3GGdX2UKGgGR8BWgAAAAAAAaAdLWmgIR0BpVy4nWrfcdX2UKGgGR8BlwAAAAAAAaAdLrmgIR0BpYSWAwwj/dX2UKGgGR8BmYAAAAAAAaAdLs2gIR0Bpa3X7Lt/ndX2UKGgGR8BkQAAAAAAAaAdLomgIR0BpdF4mkWRBdX2UKGgGR8BewAAAAAAAaAdLe2gIR0Bpe3QID5j6dX2UKGgGR8BigAAAAAAAaAdLlGgIR0Bpg30XgtOEdX2UKGgGR8BjwAAAAAAAaAdLnmgIR0BpjNRekYXPdX2UKGgGR8BioAAAAAAAaAdLlWgIR0BplQFeOXE7dX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0Bpno86mwaBdX2UKGgGR8BloAAAAAAAaAdLrWgIR0BpqVu+AVfvdX2UKGgGR8BkIAAAAAAAaAdLoWgIR0Bpstpj+aScdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BpuX7xd6cBdX2UKGgGR8BXwAAAAAAAaAdLX2gIR0BpvtyBClabdX2UKGgGR8BlQAAAAAAAaAdLqmgIR0BpyA6ZH/cWdX2UKGgGR8BkQAAAAAAAaAdLomgIR0Bp0UFdLQHBdX2UKGgGR8BiQAAAAAAAaAdLkmgIR0Bp2U7Sy+pPdX2UKGgGR8BlAAAAAAAAaAdLqGgIR0Bp4wzch1TzdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0Bp7COWBz3idWUu"
77
+ },
78
+ "ep_success_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
81
+ },
82
+ "_n_updates": 53008,
83
+ "buffer_size": 10000,
84
+ "batch_size": 128,
85
+ "learning_starts": 1000,
86
+ "tau": 1.0,
87
+ "gamma": 0.99,
88
+ "gradient_steps": 8,
89
+ "optimize_memory_usage": false,
90
+ "replay_buffer_class": {
91
+ ":type:": "<class 'abc.ABCMeta'>",
92
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
93
+ "__module__": "stable_baselines3.common.buffers",
94
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
95
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f36b28aae60>",
96
+ "add": "<function ReplayBuffer.add at 0x7f36b28aaef0>",
97
+ "sample": "<function ReplayBuffer.sample at 0x7f36b28aaf80>",
98
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f36b282f050>",
99
+ "__abstractmethods__": "frozenset()",
100
+ "_abc_impl": "<_abc_data object at 0x7f36b28a72d0>"
101
+ },
102
+ "replay_buffer_kwargs": {},
103
+ "train_freq": {
104
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
105
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLEGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
106
+ },
107
+ "actor": null,
108
+ "use_sde_at_warmup": false,
109
+ "exploration_initial_eps": 1.0,
110
+ "exploration_final_eps": 0.07,
111
+ "exploration_fraction": 0.2,
112
+ "target_update_interval": 600,
113
+ "_n_calls": 107008,
114
+ "max_grad_norm": 10,
115
+ "exploration_rate": 0.07,
116
+ "exploration_schedule": {
117
+ ":type:": "<class 'function'>",
118
+ ":serialized:": "gAWVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP7HrhR64UeyFlFKUaDhHP8mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
119
+ }
120
+ }
DQN-MountainCar-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a184b8f10d6b1b90f0a36129157f859d116b2240842810853712411d4fc04af8
3
+ size 541953
DQN-MountainCar-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:965669624a4ced4d4875fc8041c731511b5e63888e41c68f593cbe18695b5f4b
3
+ size 542721
DQN-MountainCar-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
DQN-MountainCar-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.107+-x86_64-with-debian-bullseye-sid #1 SMP Sun Apr 24 15:04:08 UTC 2022
2
+ Python: 3.7.12
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.9.1
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - MountainCar-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -101.90 +/- 12.00
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: MountainCar-v0
20
+ type: MountainCar-v0
21
+ ---
22
+
23
+ # **DQN** Agent playing **MountainCar-v0**
24
+ This is a trained model of a **DQN** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7f36b2857320>", "_build": "<function DQNPolicy._build at 0x7f36b28573b0>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7f36b2857440>", "forward": "<function DQNPolicy.forward at 0x7f36b28574d0>", "_predict": "<function DQNPolicy._predict at 0x7f36b2857560>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f36b28575f0>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f36b2857680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f36b284f3f0>"}, "verbose": 1, "policy_kwargs": {"net_arch": [256, 256]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAHKv69Ig5R9Xarcua3G7nVm8iqLZ+7wjodgUsrWUoQOUQZLmpzmLfntwhBpQB2mV5xsLwVSaHYV/FpVJUi6Z/zjcUdJoCm1kQD3imvoR+SClSzsuDMpkQdDHI9Ts6ZbawRDU0FLeovuT+aDr9rzyAqjIuDYjjDOYDOjnpZubqdiAsW4sS5LKKtP954AaPKqoMMYLZSfQKUqfMWUI3KjMhcm+GGphVcIwED4zGZnKy6PzYE+D3WD9NTc/TmlYeMkzEOPs/bwiXPQPwd20uXPPeYkW3IoPqWEBCa+hE2pTcYQaCHw58i9d/LrBnB3/mWpzf/BsRvXnwti2dHiQn0paIE3iz4l8GZrT7DsPFiWRVi4E1G4Krr8ZXaDrJEsz8wPhQx1x1mPayF6kTXDkVqinlD43sZxiUI9oW0EyqQOPIvsm4GJDb1W7n5FhQKiALk1wx4muEU/an44eU6mB1crWKM2Qe9/FT8JwnNHQrr22xfWCjq31dY2X+B00VEU3xtEih9UKm1dMVnkZ/qGOGBzlv+7hDGiuj93YKJcn42R3j4MBJZKgDiqU5szyk+b9JWmxuP8P3heNEtYiEwj2e8INvI6BMjBRGfGnFCE1ULld7UBn9izliFh7WR6+gLKdTRu4upNbreXRvNHG1m0M6n67LoV1iWq7aKjG0sq09CaV0isfUs3Uf3Eu8vaafg5btulJlN1LX/Fk5iHGXqLoN8z1C7avrqhXpuRf0jYluKutwV555aOnCnFCJhIZraz1Jdi0gQK9ijmD7uj2I34LvFezx/HEc/oKW1Fhr2VS3uedcmo2BRBQuEUVXtPAcodko6sTSDv2pzoEEs1sLBV9dowT3vJMHQDyD5uaXucoJEV7vSvGsN1Zwp0botseQrPY8/NMcy7vAtvhpfSNbXE5tvzWrryWU5uOkaP2238RaceK3PmyNoe9Q50Dbc7GqtCAO4zJlDqO2PfPRtNL5UTT9wc1GPFYujTBoeBQryDyzFunHigDbm5MXJkX/Odj+5KYB672lJBqEgZAppvNjvmyctQo/YvAzbDdvOfySpvQqeCA6CYpOQi1hDRpOmc9uM4dqu/9RtMCEdamwpKxQFf/Gn3UV1jkHgRAgSb6yIY8zjPPhJvu04jbiU7fi4OYtasc8C0ARpbjgkyJu/fkICfJBmNDRdMgxIKBeC7TP8uM9YGn+34x84VUmBFllv8Vm6UabuVBuQrZeUZYxIqadtS7teoKl+a45jrBfq8IhrOLU3e5mFmDwmZnAcvBdej7Il7ldHldSYE0ChMUjuBfimpbYeLB/wmfw/eNy5XQfxuelTX3dLMEkifVFj5VDsm7FDciW5USTUh5p0qwjIYsFuPVqMbCvBHFzAqwSUgj4Z4p50TBJnQTEv3kmvwvY+2kuKaPLUFQKIdXv2yu8Hcr6jR54ypj/wrB79WgJBqKmYdzxpFpvWrVNWmP6d2TmI6o4gqe/fCfpyG05vQzf7YG2Wakh523+9zLtVOG1k8l6NU5l5k2s+7wadujyLSh0bQFHkC2PnY+k+ifJQsji4cmAnDz6ee9pBEsbZ+EKLO6pCvdGgQ6WB8OdPXfSi6I32EyxoxJG3wqQZA90G+NlzTQHR+OZbhVxCWEx61GGpVoWAad7jWNll7iX6mG9AsPWpc5E0O+6OrWDkBuwIU9wY32CMlme07ZJS57t3jymL+qjX/wbNjLREc02SSh6R375WcZsP7tyjBZ3eRgaOkouoDnziubaaKDiUmyreGjEwOskiTIJjItt54eac117nxZcD0qz5bRN4kcZ0pTFyNTQp39degARawgoMG1XydwB129qi6V3Hl3vgXqTOosFHBEAvSadfW3YmINjsSaj0HzukElwdsJZC91eVZS1vsdYSJ+HW3bTMHNtCrTnKMnmODIbvpDVruGsFfSB9+9BSoU3KfRmXKy8Mr9+kLyM7KrkBpjK94CNfPspFIZagSZsmlIG4Oj2h7eKNuOVU6vqe7sTOKd83ip7SXHS3tymgOH7sQgQ2vOzCOzHibRzzkKgf3/bhgWHkRL63KRxNvDi0SdDtIBChGHT9sZiB4MjcDnwLe2evnL5YmX1JVS4ZWjOwsbtYfgesovF0Apz8Ku7/TxYTzsmuBoOTzncolECPFGETUMikjOUOmODlrIXss5YjlnrElGA8U9S8CxBWnIwowwflaoci3iZZOy2ENAC87B1RZn+7/o7cEORVIPaEZbJrqe+L9xOZ2Jlv30wtb/teRPOrvQSd0l9v8Em/EMh4UsIF36CfOsRYNkl0VqUyYWdPnYJwHSEiYyVgqQaQDgvjlCZaUQTnxPkGMRcKMQ5WWCySxZQqGHxm6Ah94pcm4ZaCUSvSO6ATuvlx9pR7h00hBkDER4i1kt6aNpNs0mQDW/gBphD0gPk2Ao+IICURF+0bIsLR7GrSOjOlXwApWf74ne/cd5VlRaMtHDmX1lUXd0eZU0cyhsyILjGHeyUJ/VPLZmQ7nk5N+tEOeWvQsPB52KX5fxzcn4/f1PwbwPGiTNYqSnSjcelWLqlqi85OuAmgMomw+pFCVRUu4sISkXC4X8zlFhJ50ZZndl/vWRe5pD63d5B1XG4zI6C4RHD5CToY4czMsqb62uWVu/z6qYAZQ8mg5KxyoSycwsewldRpmQZ/VhuHuunuT0uv2simVvjUNXp0y69Hw/4yA4wMsJ+6Y0pxYgD9AwQb75BQOzYsfDiuRsQLPf9i/xEnihi2rBVvDzArp/bjWCPK3Vnmqf+YsC8PEUzMmyXfZ1OJxeX5un6+2Cy7jC39OCYI6fvbxO6WhmU7d7SMWWEATVsByYZYgiuICSkQuIRQPzsuNP0OyruUWzJWdwGv1fDDgV8/+REUnMnAhiWaGOQIWGuxlBvvok9ft8sQKg4Ah397zjXQKPNnUKLlGGGKpUXN0Ox+W5a+7keZ6ReTo9zomIow58M2gsUMidH9Agp6vyVecfe7Wmusb6uhaRHHvH1URaWPQoZo1bjrXWiBuPiIODrdgvJxSgpipERuAkx392OUvdFGA8JvYtgaHmxI8qgbej9i8fSmSVpZV4zYoaga69uicGj7uHMhupybzlcEYacQTr6zxKg8wdRBqNoru6Tqlbf9/YhOdonoZpA704s1xAc5sLQBRNV4jPmL1jnX6I0qXDqAmmXPu4vjr47tzj0GhtOQJOQeeHwp/aikxFaW1SD5i+EEIygm+5ux7yPF12Gi1C0JSnoMZJwBes2QPnJAMUDYuEEe8ICCfx/G9zDPkV7+O2/rO8RNKiopN40ynLF3EUlCjmyg8dr9yIIN3BRV0MQ2rDEoak6ApJyl25+/sbHlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RN6wF1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 3, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 107008, "_total_timesteps": 107000, "_num_timesteps_at_start": 0, "seed": 21121, "action_noise": null, "start_time": 1652293653.376172, "learning_rate": 0.004, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL29wdC9jb25kYS9saWIvcHl0aG9uMy43L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9wYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAM3z775qTz68lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAFIB6r5HzSW8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="}, "_episode_num": 609, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -7.47663551401434e-05, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwF0AAAAAAACMAWyUS3SMAXSUR0Bmjwz7/GVBdX2UKGgGR8BlYAAAAAAAaAdLq2gIR0BmmPzxwyZbdX2UKGgGR8BiAAAAAAAAaAdLkGgIR0BmoZ9uxbB5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BmrQAlv60qdX2UKGgGR8BlIAAAAAAAaAdLqWgIR0BmtrvgFX7tdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0BmvwNI9TxYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bmyx8F6iTMdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0Bm0i75Ec81dX2UKGgGR8BZQAAAAAAAaAdLZWgIR0Bm2CBkI5YHdX2UKGgGR8BhYAAAAAAAaAdLi2gIR0Bm4M0zj3mFdX2UKGgGR8BaAAAAAAAAaAdLaGgIR0Bm54bOu7pWdX2UKGgGR8BiQAAAAAAAaAdLkmgIR0Bm792TxG2DdX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0Bm+ADs+mm+dX2UKGgGR8BjgAAAAAAAaAdLnGgIR0BnANFrl/6PdX2UKGgGR8BjAAAAAAAAaAdLmGgIR0BnCPIlt0mudX2UKGgGR8BWQAAAAAAAaAdLWWgIR0BnDjYdyT6jdX2UKGgGR8BVgAAAAAAAaAdLVmgIR0BnEuYrrgO0dX2UKGgGR8BdgAAAAAAAaAdLdmgIR0BnGeOZLIxQdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BnIC5sj3VTdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0BnKGIGhVU/dX2UKGgGR8BkoAAAAAAAaAdLpWgIR0BnMgaDPGADdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0BnOFXPqs2fdX2UKGgGR8BXgAAAAAAAaAdLXmgIR0BnPbNliBoVdX2UKGgGR8BgIAAAAAAAaAdLgWgIR0BnRObqhUR4dX2UKGgGR8BjgAAAAAAAaAdLnGgIR0BnTafg75mAdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0BnU/VCojwAdX2UKGgGR8BjYAAAAAAAaAdLm2gIR0BnXL9ETg2qdX2UKGgGR8BmIAAAAAAAaAdLsWgIR0BnakUCaJAMdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0BndW+M6zVudX2UKGgGR8BjgAAAAAAAaAdLnGgIR0Bnfk9+w1R+dX2UKGgGR8BeAAAAAAAAaAdLeGgIR0Bnhd2aDwpfdX2UKGgGR8BkgAAAAAAAaAdLpGgIR0Bnj6drftQbdX2UKGgGR8BhwAAAAAAAaAdLjmgIR0Bnl6gTRIBjdX2UKGgGR8BWQAAAAAAAaAdLWWgIR0BnnETtb9qDdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0BnpY/keZG8dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0BnrHdAPd2xdX2UKGgGR8BagAAAAAAAaAdLamgIR0Bnsh9qk/KRdX2UKGgGR8BWAAAAAAAAaAdLWGgIR0Bnt0wYcebNdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0BnwEAYHgP3dX2UKGgGR8BbgAAAAAAAaAdLbmgIR0Bnx24kNWludX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bn1B7LMcIadX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0Bn3Nhd+ocadX2UKGgGR8BkwAAAAAAAaAdLpmgIR0Bn5qMo+fRNdX2UKGgGR8BmIAAAAAAAaAdLsWgIR0Bn8GumrKeTdX2UKGgGR8BgYAAAAAAAaAdLg2gIR0Bn95ZQpF1CdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0Bn/c/nnuAqdX2UKGgGR8BloAAAAAAAaAdLrWgIR0BoB5n13+uOdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0BoD6R2bG3ndX2UKGgGR8BjIAAAAAAAaAdLmWgIR0BoGI46wMYudX2UKGgGR8BhwAAAAAAAaAdLjmgIR0BoIIjyFwkxdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0BoJ5UgjhUBdX2UKGgGR8BjAAAAAAAAaAdLmGgIR0BoL+03Ov+wdX2UKGgGR8BigAAAAAAAaAdLlGgIR0BoOBTjvNNbdX2UKGgGR8Bm4AAAAAAAaAdLt2gIR0BoQxazNUwSdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0BoTGpXIU8FdX2UKGgGR8BYQAAAAAAAaAdLYWgIR0BoUiH/LkjpdX2UKGgGR8BioAAAAAAAaAdLlWgIR0BoWlIuoP07dX2UKGgGR8BmAAAAAAAAaAdLsGgIR0BoZUBCD28JdX2UKGgGR8BlgAAAAAAAaAdLrGgIR0Bobw5q/M4cdX2UKGgGR8BlwAAAAAAAaAdLrmgIR0BoeOyon8badX2UKGgGR8BjQAAAAAAAaAdLmmgIR0BogUJ2MbWFdX2UKGgGR8Bl4AAAAAAAaAdLr2gIR0BoiyWcBltkdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0Bok+RmseXBdX2UKGgGR8BjIAAAAAAAaAdLmWgIR0BonAUpNKywdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bop7fWMCLddX2UKGgGR8BlQAAAAAAAaAdLqmgIR0BosRnOB19wdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0BoukC9ytFKdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0BownE2pAD8dX2UKGgGR8Bo4AAAAAAAaAdLx2gIR0Bo0zGrCFbndX2UKGgGR8BkYAAAAAAAaAdLo2gIR0Bo3NLUTcqOdX2UKGgGR8BkIAAAAAAAaAdLoWgIR0Bo5d78ejmCdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bo8OepXIU8dX2UKGgGR8BoIAAAAAAAaAdLwWgIR0Bo/vIMjNY9dX2UKGgGR8BiIAAAAAAAaAdLkWgIR0BpC0iliz9kdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0BpFvTodMkAdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0BpIXechC+ldX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0BpKcSkCV8kdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0BpMrx5LRKIdX2UKGgGR8BVQAAAAAAAaAdLVWgIR0BpN4FcIJJHdX2UKGgGR8BiwAAAAAAAaAdLlmgIR0BpQHEhq0tzdX2UKGgGR8BigAAAAAAAaAdLlGgIR0BpSKIznA6/dX2UKGgGR8BlAAAAAAAAaAdLqGgIR0BpUdaIN3GGdX2UKGgGR8BWgAAAAAAAaAdLWmgIR0BpVy4nWrfcdX2UKGgGR8BlwAAAAAAAaAdLrmgIR0BpYSWAwwj/dX2UKGgGR8BmYAAAAAAAaAdLs2gIR0Bpa3X7Lt/ndX2UKGgGR8BkQAAAAAAAaAdLomgIR0BpdF4mkWRBdX2UKGgGR8BewAAAAAAAaAdLe2gIR0Bpe3QID5j6dX2UKGgGR8BigAAAAAAAaAdLlGgIR0Bpg30XgtOEdX2UKGgGR8BjwAAAAAAAaAdLnmgIR0BpjNRekYXPdX2UKGgGR8BioAAAAAAAaAdLlWgIR0BplQFeOXE7dX2UKGgGR8Bi4AAAAAAAaAdLl2gIR0Bpno86mwaBdX2UKGgGR8BloAAAAAAAaAdLrWgIR0BpqVu+AVfvdX2UKGgGR8BkIAAAAAAAaAdLoWgIR0Bpstpj+aScdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BpuX7xd6cBdX2UKGgGR8BXwAAAAAAAaAdLX2gIR0BpvtyBClabdX2UKGgGR8BlQAAAAAAAaAdLqmgIR0BpyA6ZH/cWdX2UKGgGR8BkQAAAAAAAaAdLomgIR0Bp0UFdLQHBdX2UKGgGR8BiQAAAAAAAaAdLkmgIR0Bp2U7Sy+pPdX2UKGgGR8BlAAAAAAAAaAdLqGgIR0Bp4wzch1TzdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0Bp7COWBz3idWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 53008, "buffer_size": 10000, "batch_size": 128, "learning_starts": 1000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 8, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f36b28aae60>", "add": "<function ReplayBuffer.add at 0x7f36b28aaef0>", "sample": "<function ReplayBuffer.sample at 0x7f36b28aaf80>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f36b282f050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f36b28a72d0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLEGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.07, "exploration_fraction": 0.2, "target_update_interval": 600, "_n_calls": 107008, "max_grad_norm": 10, "exploration_rate": 0.07, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP7HrhR64UeyFlFKUaDhHP8mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.10.107+-x86_64-with-debian-bullseye-sid #1 SMP Sun Apr 24 15:04:08 UTC 2022", "Python": "3.7.12", "Stable-Baselines3": "1.5.0", "PyTorch": "1.9.1", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ec17c00c3977919e8f85d88e47c6aa587c0faf7c27b0cc91ba0be6abd5176c4
3
+ size 253163
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -101.9, "std_reward": 11.995415791042843, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T18:31:50.148879"}