File size: 8,467 Bytes
912047e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import os
import random
from functools import partial
from typing import Any
import evaluate
import numpy as np
import torch
import torch.nn as nn
from datasets import Dataset, DatasetDict, load_dataset
from torch.utils.data import DataLoader
from tqdm.notebook import tqdm
from transformers import (CLIPImageProcessor, CLIPModel, CLIPProcessor,
CLIPTokenizerFast, Trainer, TrainingArguments)
from datasets.formatting.formatting import LazyBatch
from huggingface_hub import HfApi, login, create_repo
# Environment settings
os.environ["CURL_CA_BUNDLE"] = ""
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Seed setting
def seed_all(seed: int):
random.seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
seed_all(69)
# Dataset preparation
dataset = load_dataset("pcuenq/oxford-pets")
dataset_train_val = dataset['train'].train_test_split(test_size=0.3)
dataset_val_test = dataset_train_val['test'].train_test_split(test_size=0.2)
dataset = DatasetDict({
"train": dataset_train_val['train'],
"val": dataset_val_test['test'],
"test": dataset_val_test['train']
})
labels = set(dataset['train']['label'])
label2id = {label: i for i, label in enumerate(labels)}
id2label = {i: label for label, i in label2id.items()}
labels = list(label2id)
MODEL_NAME = "openai/clip-vit-base-patch32"
TOKENIZER = CLIPTokenizerFast.from_pretrained(MODEL_NAME)
IMAGE_PROCESSOR = CLIPImageProcessor.from_pretrained(MODEL_NAME)
# Transformation functions
def transform_class_labels(items: LazyBatch, tokenizer: CLIPTokenizerFast, label2id: dict[str, int]) -> dict[str, Any]:
label_prompt = [f"a photo of {label}" for label in items["label"]]
output = tokenizer(label_prompt, padding=True, return_tensors="pt")
items["input_ids"] = output["input_ids"]
items["attention_mask"] = output["attention_mask"]
items["label_id"] = [label2id[label] for label in items["label"]]
return items
def transform_image(items: LazyBatch, image_processor: CLIPImageProcessor) -> dict[str, Any]:
output = image_processor(items["image"], return_tensors="pt")
items["pixel_values"] = output["pixel_values"]
return items
dataset = dataset.map(partial(transform_class_labels, tokenizer=TOKENIZER, label2id=label2id), batched=True)
dataset.set_transform(partial(transform_image, image_processor=IMAGE_PROCESSOR))
# Utility functions
def get_module_device(module: nn.Module) -> torch.device:
return next(module.parameters()).device
def freeze_params(module: nn.Module, freeze_top_percent: float = 1.0) -> None:
all_params_length = len(list(module.parameters()))
for indx, param in enumerate(module.parameters()):
if int(all_params_length * freeze_top_percent) <= indx:
break
param.requires_grad = False
def print_trainable_parameters(model: nn.Module) -> None:
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
print(
f"Trainable params: {(trainable_params / 10**6):.4f}M || All params: {(all_param / 10**6):.4f}M || Trainable%: {100 * trainable_params / all_param:.2f}%"
)
# CLIP Classifier model
class CLIPClassifier(nn.Module):
def __init__(self, clip_model: CLIPModel, tokenizer: CLIPTokenizerFast, labels: list[str]):
super().__init__()
self.model = clip_model
self.tokenizer = tokenizer
self.logit_scale = self.model.logit_scale.exp()
self.label2id = {label: i for i, label in enumerate(labels)}
self.labels_embeddings = nn.Parameter(self.generate_labels_embeddings(labels))
def generate_labels_embeddings(self, labels: list[str]) -> torch.Tensor:
labels_inputs = self.tokenizer(
[f"a photo of {label}" for label in labels],
return_tensors="pt",
padding=True,
).to(get_module_device(self.model))
labels_embeddings = self.model.get_text_features(**labels_inputs)
labels_embeddings /= labels_embeddings.norm(p=2, dim=-1, keepdim=True)
return labels_embeddings
def forward(self, images: torch.Tensor) -> torch.Tensor:
image_features = self.model.get_image_features(images)
image_features /= image_features.norm(p=2, dim=-1, keepdim=True)
return torch.matmul(image_features, self.labels_embeddings.T) * self.logit_scale
# Evaluation function
def calculate_accuracy(model: CLIPClassifier, dataloader: DataLoader) -> float:
metric = evaluate.load("accuracy")
predictions_list = []
references_list = []
device = get_module_device(model)
for batch in tqdm(dataloader, total=len(dataloader), desc="Evaluate model on dataset"):
batch["pixel_values"] = batch["pixel_values"].to(device)
predictions = model(batch["pixel_values"])
predictions_list.append(torch.argmax(predictions, dim=1))
references_list.append(batch["label_id"])
return metric.compute(
predictions=torch.concat(predictions_list),
references=torch.concat(references_list),
)["accuracy"]
def collate_fn(items: LazyBatch) -> dict[str, Any]:
return {
"pixel_values": torch.stack([item["pixel_values"] for item in items]),
"input_ids": torch.tensor([item["input_ids"] for item in items]),
"attention_mask": torch.tensor([item["attention_mask"] for item in items]),
"label_id": torch.tensor([item["label_id"] for item in items]),
"return_loss": True,
}
@torch.no_grad()
def evaluate_clip_classifier(
model: nn.Module,
dataset: Dataset,
tokenizer: CLIPTokenizerFast,
labels: list[str],
batch_size: int = 64,
num_workers: int = 5,
device: str = "cuda",
) -> None:
clip_classifier = CLIPClassifier(model, tokenizer, labels)
test_dataloader = DataLoader(
dataset, batch_size=batch_size, num_workers=num_workers, collate_fn=collate_fn
)
clip_classifier = clip_classifier.to(device)
acc = calculate_accuracy(clip_classifier, test_dataloader)
print(f"Model accuracy: {acc}")
def collate_train_fn(items: LazyBatch):
items = collate_fn(items)
items.pop("label_id")
return items
def get_default_training_args(
experiment_name: str,
lr: float,
batch_size: int = 256,
num_epoch: int = 4,
num_workers: int = 15,
) -> TrainingArguments:
return TrainingArguments(
experiment_name,
per_device_train_batch_size=batch_size,
learning_rate=lr,
num_train_epochs=num_epoch,
per_device_eval_batch_size=batch_size,
gradient_accumulation_steps=1,
logging_steps=10,
save_total_limit=2,
evaluation_strategy="epoch",
save_strategy="epoch",
fp16=True,
remove_unused_columns=False,
load_best_model_at_end=True,
dataloader_num_workers=num_workers,
)
# Training
clip_full_finetuned = CLIPModel.from_pretrained(MODEL_NAME)
trainer = Trainer(
model=clip_full_finetuned,
args=get_default_training_args("clip-all-layers-tuning-oxford-pets", 3e-6),
data_collator=collate_train_fn,
train_dataset=dataset["train"],
eval_dataset=dataset["val"],
)
trainer.train()
print_trainable_parameters(clip_full_finetuned)
evaluate_clip_classifier(clip_full_finetuned, dataset['test'], TOKENIZER, labels)
# Hugging Face Hub interaction
login(token='TOKEN')
api = HfApi()
repo_url = create_repo(repo_id="DGurgurov/clip-vit-base-patch32-oxford-pets", exist_ok=True)
print(f"Repository created at: {repo_url}")
api.upload_folder(
folder_path=f'clip-all-layers-tuning-oxford-pets/checkpoint-84',
path_in_repo='',
repo_id='DGurgurov/clip-vit-base-patch32-oxford-pets'
)
# README creation
readme_content = f"""
# CLIP ViT Base Patch32 Fine-tuned on Oxford Pets
This model is a fine-tuned version of OpenAI's CLIP model on the Oxford Pets dataset.
## Training Information
- **Model Name**: openai/clip-vit-base-patch32
- **Dataset**: oxford-pets
- **Training Epochs**: 4
- **Batch Size**: 256
- **Learning Rate**: 3e-6
- **Accuracy**: 93.74%
## License
[MIT]
"""
with open(f'clip-all-layers-tuning-oxford-pets/checkpoint-84/README.md', 'w') as f:
f.write(readme_content)
api.upload_file(
path_or_fileobj=f'clip-all-layers-tuning-oxford-pets/checkpoint-84/README.md',
path_in_repo='README.md',
repo_id='DGurgurov/clip-vit-base-patch32-oxford-pets'
)
|