Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Your Model Name
|
3 |
+
|
4 |
+
This model is a VisionEncoderDecoderModel fine-tuned on a dataset for generating LaTeX formulas from images.
|
5 |
+
|
6 |
+
## Model Details
|
7 |
+
|
8 |
+
- **Encoder**: Swin Transformer
|
9 |
+
- **Decoder**: GPT-2
|
10 |
+
- **Framework**: PyTorch
|
11 |
+
- **DDP (Distributed Data Parallel)**: Used for training
|
12 |
+
|
13 |
+
## Training Data
|
14 |
+
|
15 |
+
The data is taken from [OleehyO/latex-formulas](https://huggingface.co/datasets/OleehyO/latex-formulas). The data was divided into 80:10:10 for train, val and test. The splits were made as follows:
|
16 |
+
|
17 |
+
```python
|
18 |
+
dataset = load_dataset(OleehyO/latex-formulas, cleaned_formulas)
|
19 |
+
train_val_split = dataset["train"].train_test_split(test_size=0.2, seed=42)
|
20 |
+
train_ds = train_val_split["train"]
|
21 |
+
val_test_split = train_val_split["test"].train_test_split(test_size=0.5, seed=42)
|
22 |
+
val_ds = val_test_split["train"]
|
23 |
+
test_ds = val_test_split["test"]
|
24 |
+
```
|
25 |
+
|
26 |
+
## Evaluation Metrics
|
27 |
+
|
28 |
+
The model was evaluated on a test set with the following results:
|
29 |
+
- **Test Loss**: 0.10473818009443304
|
30 |
+
- **Test BLEU Score**: 0.6661951245257148
|
31 |
+
|
32 |
+
## Usage
|
33 |
+
|
34 |
+
You can use the model directly with the `transformers` library:
|
35 |
+
|
36 |
+
```python
|
37 |
+
from transformers import VisionEncoderDecoderModel, AutoTokenizer, AutoFeatureExtractor
|
38 |
+
import torch
|
39 |
+
from PIL import Image
|
40 |
+
|
41 |
+
# Load model, tokenizer, and feature extractor
|
42 |
+
model = VisionEncoderDecoderModel.from_pretrained("your-username/your-model-name")
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained("your-username/your-model-name")
|
44 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("your-username/your-model-name")
|
45 |
+
|
46 |
+
# Prepare an image
|
47 |
+
image = Image.open("path/to/your/image.png")
|
48 |
+
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values
|
49 |
+
|
50 |
+
# Generate LaTeX formula
|
51 |
+
generated_ids = model.generate(pixel_values)
|
52 |
+
generated_texts = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
53 |
+
|
54 |
+
print("Generated LaTeX formula:", generated_texts[0])
|
55 |
+
```
|
56 |
+
|
57 |
+
## Training Script
|
58 |
+
The training script for this model can be found in the following repository: [GitHub](https://github.com/d-gurgurov/im2latex)
|
59 |
+
|
60 |
+
License
|
61 |
+
[MIT]
|