DariaaaS commited on
Commit
538f62d
1 Parent(s): 4ebcd0c

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,353 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: intfloat/multilingual-e5-base
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:100
13
+ - loss:TripletLoss
14
+ widget:
15
+ - source_sentence: What is the average household income in the city known as "Danzig"?
16
+ sentences:
17
+ - the most bad aliases refer to MAX(COUNT(bad_alias));
18
+ - Greeneville is the city;
19
+ - average household income refers to avg_income_per_household; city known as "Danzig"
20
+ refers to bad_alias = 'Danzig';
21
+ - source_sentence: What is the average household income in the city known as "Danzig"?
22
+ sentences:
23
+ - '"Berlin, NH" is the CBSA_name'
24
+ - '"Puerto Rico" refers to state = ''PR'''
25
+ - average household income refers to avg_income_per_household; city known as "Danzig"
26
+ refers to bad_alias = 'Danzig';
27
+ - source_sentence: What is the country and state of the city named Dalton?
28
+ sentences:
29
+ - median age over 40 refers to median_age > 40
30
+ - DIVIDE(SUBTRACT(SUM(population_2020)), SUM(population_2010)), SUM(population_2010)
31
+ as percentage where county = 'ARROYO';
32
+ - Dalton is the city;
33
+ - source_sentence: What is the country and state of the city named Dalton?
34
+ sentences:
35
+ - community post office type refers to type = 'Community Post Office'; elevation
36
+ above 6000 refers to elevation > 6000;
37
+ - Dalton is the city;
38
+ - '"Berlin, NH" is the CBSA_name'
39
+ - source_sentence: List 10 cities with a median age over 40. Include their zip codes
40
+ and area codes.
41
+ sentences:
42
+ - '"URB San Joaquin" is the bad_alias'
43
+ - in California refers to name = 'California' and state = 'CA'; 'Community Post
44
+ Office' is the Type
45
+ - median age over 40 refers to median_age > 40
46
+ ---
47
+
48
+ # SentenceTransformer based on intfloat/multilingual-e5-base
49
+
50
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
51
+
52
+ ## Model Details
53
+
54
+ ### Model Description
55
+ - **Model Type:** Sentence Transformer
56
+ - **Base model:** [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) <!-- at revision d13f1b27baf31030b7fd040960d60d909913633f -->
57
+ - **Maximum Sequence Length:** 512 tokens
58
+ - **Output Dimensionality:** 768 tokens
59
+ - **Similarity Function:** Cosine Similarity
60
+ <!-- - **Training Dataset:** Unknown -->
61
+ <!-- - **Language:** Unknown -->
62
+ <!-- - **License:** Unknown -->
63
+
64
+ ### Model Sources
65
+
66
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
67
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
68
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
69
+
70
+ ### Full Model Architecture
71
+
72
+ ```
73
+ SentenceTransformer(
74
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
75
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
76
+ (2): Normalize()
77
+ )
78
+ ```
79
+
80
+ ## Usage
81
+
82
+ ### Direct Usage (Sentence Transformers)
83
+
84
+ First install the Sentence Transformers library:
85
+
86
+ ```bash
87
+ pip install -U sentence-transformers
88
+ ```
89
+
90
+ Then you can load this model and run inference.
91
+ ```python
92
+ from sentence_transformers import SentenceTransformer
93
+
94
+ # Download from the 🤗 Hub
95
+ model = SentenceTransformer("DariaaaS/e5-fine-tuned")
96
+ # Run inference
97
+ sentences = [
98
+ 'List 10 cities with a median age over 40. Include their zip codes and area codes.',
99
+ 'median age over 40 refers to median_age > 40',
100
+ "in California refers to name = 'California' and state = 'CA'; 'Community Post Office' is the Type",
101
+ ]
102
+ embeddings = model.encode(sentences)
103
+ print(embeddings.shape)
104
+ # [3, 768]
105
+
106
+ # Get the similarity scores for the embeddings
107
+ similarities = model.similarity(embeddings, embeddings)
108
+ print(similarities.shape)
109
+ # [3, 3]
110
+ ```
111
+
112
+ <!--
113
+ ### Direct Usage (Transformers)
114
+
115
+ <details><summary>Click to see the direct usage in Transformers</summary>
116
+
117
+ </details>
118
+ -->
119
+
120
+ <!--
121
+ ### Downstream Usage (Sentence Transformers)
122
+
123
+ You can finetune this model on your own dataset.
124
+
125
+ <details><summary>Click to expand</summary>
126
+
127
+ </details>
128
+ -->
129
+
130
+ <!--
131
+ ### Out-of-Scope Use
132
+
133
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
134
+ -->
135
+
136
+ <!--
137
+ ## Bias, Risks and Limitations
138
+
139
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
140
+ -->
141
+
142
+ <!--
143
+ ### Recommendations
144
+
145
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
146
+ -->
147
+
148
+ ## Training Details
149
+
150
+ ### Training Dataset
151
+
152
+ #### Unnamed Dataset
153
+
154
+
155
+ * Size: 100 training samples
156
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
157
+ * Approximate statistics based on the first 1000 samples:
158
+ | | sentence_0 | sentence_1 | sentence_2 |
159
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
160
+ | type | string | string | string |
161
+ | details | <ul><li>min: 11 tokens</li><li>mean: 19.8 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 21.3 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 27.57 tokens</li><li>max: 54 tokens</li></ul> |
162
+ * Samples:
163
+ | sentence_0 | sentence_1 | sentence_2 |
164
+ |:---------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------|
165
+ | <code>Among all the residential areas in Delaware, how many of them implement daylight saving?</code> | <code>"Delaware" is a county; implement daylight savings refers to daylight_saving = 'Yes'</code> | <code>DIVIDE(COUNT(zip_code where type = 'Post Office'), COUNT(zip_code)) as percentage where name = 'California';</code> |
166
+ | <code>What is the country and state of the city named Dalton?</code> | <code>Dalton is the city;</code> | <code>average male median age refers to Divide (Sum(male_median_age), Count(county)); 'WINDHAM' is the county</code> |
167
+ | <code>Among the residential areas with the bad alias "Internal Revenue Service", how many of them are in the Eastern time zone?</code> | <code>"Internal Revenue Service" is the bad_alias; in Eastern time zone refers to time_zone = 'Eastern'</code> | <code>"Berlin, NH" is the CBSA_name</code> |
168
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
169
+ ```json
170
+ {
171
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
172
+ "triplet_margin": 5
173
+ }
174
+ ```
175
+
176
+ ### Training Hyperparameters
177
+ #### Non-Default Hyperparameters
178
+
179
+ - `per_device_train_batch_size`: 10
180
+ - `per_device_eval_batch_size`: 10
181
+ - `num_train_epochs`: 5
182
+ - `multi_dataset_batch_sampler`: round_robin
183
+
184
+ #### All Hyperparameters
185
+ <details><summary>Click to expand</summary>
186
+
187
+ - `overwrite_output_dir`: False
188
+ - `do_predict`: False
189
+ - `eval_strategy`: no
190
+ - `prediction_loss_only`: True
191
+ - `per_device_train_batch_size`: 10
192
+ - `per_device_eval_batch_size`: 10
193
+ - `per_gpu_train_batch_size`: None
194
+ - `per_gpu_eval_batch_size`: None
195
+ - `gradient_accumulation_steps`: 1
196
+ - `eval_accumulation_steps`: None
197
+ - `learning_rate`: 5e-05
198
+ - `weight_decay`: 0.0
199
+ - `adam_beta1`: 0.9
200
+ - `adam_beta2`: 0.999
201
+ - `adam_epsilon`: 1e-08
202
+ - `max_grad_norm`: 1
203
+ - `num_train_epochs`: 5
204
+ - `max_steps`: -1
205
+ - `lr_scheduler_type`: linear
206
+ - `lr_scheduler_kwargs`: {}
207
+ - `warmup_ratio`: 0.0
208
+ - `warmup_steps`: 0
209
+ - `log_level`: passive
210
+ - `log_level_replica`: warning
211
+ - `log_on_each_node`: True
212
+ - `logging_nan_inf_filter`: True
213
+ - `save_safetensors`: True
214
+ - `save_on_each_node`: False
215
+ - `save_only_model`: False
216
+ - `restore_callback_states_from_checkpoint`: False
217
+ - `no_cuda`: False
218
+ - `use_cpu`: False
219
+ - `use_mps_device`: False
220
+ - `seed`: 42
221
+ - `data_seed`: None
222
+ - `jit_mode_eval`: False
223
+ - `use_ipex`: False
224
+ - `bf16`: False
225
+ - `fp16`: False
226
+ - `fp16_opt_level`: O1
227
+ - `half_precision_backend`: auto
228
+ - `bf16_full_eval`: False
229
+ - `fp16_full_eval`: False
230
+ - `tf32`: None
231
+ - `local_rank`: 0
232
+ - `ddp_backend`: None
233
+ - `tpu_num_cores`: None
234
+ - `tpu_metrics_debug`: False
235
+ - `debug`: []
236
+ - `dataloader_drop_last`: False
237
+ - `dataloader_num_workers`: 0
238
+ - `dataloader_prefetch_factor`: None
239
+ - `past_index`: -1
240
+ - `disable_tqdm`: False
241
+ - `remove_unused_columns`: True
242
+ - `label_names`: None
243
+ - `load_best_model_at_end`: False
244
+ - `ignore_data_skip`: False
245
+ - `fsdp`: []
246
+ - `fsdp_min_num_params`: 0
247
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
248
+ - `fsdp_transformer_layer_cls_to_wrap`: None
249
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
250
+ - `deepspeed`: None
251
+ - `label_smoothing_factor`: 0.0
252
+ - `optim`: adamw_torch
253
+ - `optim_args`: None
254
+ - `adafactor`: False
255
+ - `group_by_length`: False
256
+ - `length_column_name`: length
257
+ - `ddp_find_unused_parameters`: None
258
+ - `ddp_bucket_cap_mb`: None
259
+ - `ddp_broadcast_buffers`: False
260
+ - `dataloader_pin_memory`: True
261
+ - `dataloader_persistent_workers`: False
262
+ - `skip_memory_metrics`: True
263
+ - `use_legacy_prediction_loop`: False
264
+ - `push_to_hub`: False
265
+ - `resume_from_checkpoint`: None
266
+ - `hub_model_id`: None
267
+ - `hub_strategy`: every_save
268
+ - `hub_private_repo`: False
269
+ - `hub_always_push`: False
270
+ - `gradient_checkpointing`: False
271
+ - `gradient_checkpointing_kwargs`: None
272
+ - `include_inputs_for_metrics`: False
273
+ - `eval_do_concat_batches`: True
274
+ - `fp16_backend`: auto
275
+ - `push_to_hub_model_id`: None
276
+ - `push_to_hub_organization`: None
277
+ - `mp_parameters`:
278
+ - `auto_find_batch_size`: False
279
+ - `full_determinism`: False
280
+ - `torchdynamo`: None
281
+ - `ray_scope`: last
282
+ - `ddp_timeout`: 1800
283
+ - `torch_compile`: False
284
+ - `torch_compile_backend`: None
285
+ - `torch_compile_mode`: None
286
+ - `dispatch_batches`: None
287
+ - `split_batches`: None
288
+ - `include_tokens_per_second`: False
289
+ - `include_num_input_tokens_seen`: False
290
+ - `neftune_noise_alpha`: None
291
+ - `optim_target_modules`: None
292
+ - `batch_eval_metrics`: False
293
+ - `eval_on_start`: False
294
+ - `batch_sampler`: batch_sampler
295
+ - `multi_dataset_batch_sampler`: round_robin
296
+
297
+ </details>
298
+
299
+ ### Framework Versions
300
+ - Python: 3.10.12
301
+ - Sentence Transformers: 3.0.1
302
+ - Transformers: 4.42.4
303
+ - PyTorch: 2.4.0+cu121
304
+ - Accelerate: 0.32.1
305
+ - Datasets: 2.21.0
306
+ - Tokenizers: 0.19.1
307
+
308
+ ## Citation
309
+
310
+ ### BibTeX
311
+
312
+ #### Sentence Transformers
313
+ ```bibtex
314
+ @inproceedings{reimers-2019-sentence-bert,
315
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
316
+ author = "Reimers, Nils and Gurevych, Iryna",
317
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
318
+ month = "11",
319
+ year = "2019",
320
+ publisher = "Association for Computational Linguistics",
321
+ url = "https://arxiv.org/abs/1908.10084",
322
+ }
323
+ ```
324
+
325
+ #### TripletLoss
326
+ ```bibtex
327
+ @misc{hermans2017defense,
328
+ title={In Defense of the Triplet Loss for Person Re-Identification},
329
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
330
+ year={2017},
331
+ eprint={1703.07737},
332
+ archivePrefix={arXiv},
333
+ primaryClass={cs.CV}
334
+ }
335
+ ```
336
+
337
+ <!--
338
+ ## Glossary
339
+
340
+ *Clearly define terms in order to be accessible across audiences.*
341
+ -->
342
+
343
+ <!--
344
+ ## Model Card Authors
345
+
346
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
347
+ -->
348
+
349
+ <!--
350
+ ## Model Card Contact
351
+
352
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
353
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "intfloat/multilingual-e5-base",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.42.4",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.42.4",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2b8b1550071c02c3bf0089ee2880b7397acd20513483a1b9306171c786483a1
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "tokenizer_class": "XLMRobertaTokenizer",
53
+ "unk_token": "<unk>"
54
+ }