Text Generation
Transformers
PyTorch
English
mistral
text-generation-inference
Inference Endpoints
File size: 2,080 Bytes
a71919b
133075f
 
 
 
 
 
a71919b
 
 
133075f
a71919b
133075f
a71919b
133075f
a71919b
133075f
a71919b
133075f
a71919b
133075f
a71919b
133075f
 
 
a71919b
133075f
a71919b
133075f
 
 
a71919b
133075f
a71919b
133075f
a71919b
133075f
 
 
a71919b
133075f
a71919b
133075f
a71919b
133075f
a71919b
133075f
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
license: apache-2.0
datasets:
- togethercomputer/RedPajama-Data-1T
language:
- en
pipeline_tag: text-generation
library_name: transformers
---

## PDS-470M

[paper](https://arxiv.org/abs/2410.07064) | [code](https://github.com/microsoft/LMOps/tree/main/data_selection)

**PDS-470M** is a 470M model with [Mistral](https://arxiv.org/abs/2310.06825) achitecture pre-trained from scratch on the data selected from the CC split of [Redpajama](https://github.com/togethercomputer/RedPajama-Data), using the PDS framework.

The PDS framework is based on the [Pontryagin's maximum principle](https://en.wikipedia.org/wiki/Pontryagin%27s_maximum_principle#:~:text=Pontryagin's%20maximum%20principle%20is%20used,the%20state%20or%20input%20controls.) for optimal pre-training data selection, which not only enjoy strong theoretical support but is also scalable for training large language models. 

Please refer to our [paper](https://arxiv.org/abs/2410.07064) for more details.

### Overview of the theory:

<p align='left'>
    <img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/Hdw83Vsb305GRlsqB7c34.png" width="700">
</p>

### Overview of the PDS framework:

<p align='left'>
    <img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/YPwluLyZGK7DACH1WqDUN.png" width="700">
</p>

### Evaluation

PDS-selected data improves the performance of language models pre-trained from scratch and saves pre-training comptation. The improvement scales up to large model sizes.

<p align='left'>
    <img src="https://cdn-uploads.huggingface.co/production/uploads/624ac662102fcdff87be51b9/6undIr37d10qD73TDiPDK.png" width="600">
</p>

### Baseline

[Conventional Pre-training](https://huggingface.co/Data-Selection/BSL-470M)

### Citation

```bibtex
@article{gu2024data,
  title={Data Selection via Optimal Control for Language Models},
  author={Gu, Yuxian and Dong, Li and Wang, Hongning and Hao, Yaru and Dong, Qingxiu and Wei, Furu and Huang, Minlie},
  journal={arXiv preprint arXiv:2410.07064},
  year={2024}
}
```