File size: 1,886 Bytes
c6cefbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
license: apache-2.0
---
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/65f01b5235c5424c262c8be8/QGK7V1u4uq9Co_b-EM4Go.jpeg)
## 概要

ArrowPro-7B-KUJIRAはMistral系のNTQAI/chatntq-ja-7b-v1.0をベースにAItuber、AIアシスタントの魂となるようにChat性能を重視して作られました。

## ベンチマーク

ArrowPro-7B-KUJIRAはベンチマーク(ELYZA-TASK100)において約3.8(LLaMa3-70B準拠)をマークし、7Bにおいて日本語性能世界一を達成しました。

![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f01b5235c5424c262c8be8/xwR2f_msM-mJUAbdmlu4v.png)

## How to use
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("DataPilot/ArrowPro-7B-KUJIRA")
model = AutoModelForCausalLM.from_pretrained(
  "DataPilot/ArrowPro-7B-KUJIRA",
  torch_dtype="auto",
)
model.eval()

if torch.cuda.is_available():
    model = model.to("cuda")

def build_prompt(user_query):
    sys_msg = "あなたは日本語を話す優秀なアシスタントです。回答には必ず日本語で答えてください。"
    template = """[INST] <<SYS>>
{}
<</SYS>>

{}[/INST]"""
    return template.format(sys_msg,user_query)

# Infer with prompt without any additional input
user_inputs = {
    "user_query": "まどマギで一番かわいいキャラはだれ?",
}
prompt = build_prompt(**user_inputs)

input_ids = tokenizer.encode(
    prompt, 
    add_special_tokens=True, 
    return_tensors="pt"
)

tokens = model.generate(
    input_ids.to(device=model.device),
    max_new_tokens=500,
    temperature=1,
    top_p=0.95,
    do_sample=True,
)

out = tokenizer.decode(tokens[0][input_ids.shape[1]:], skip_special_tokens=True).strip()
print(out)

## 謝辞
助言を与えてくださったすべての皆様に感謝します。