File size: 2,158 Bytes
c6cefbe
3416a3b
c6cefbe
 
 
 
acf8b03
c6cefbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235bf16
c6cefbe
 
 
ce32d1f
 
3416a3b
ce32d1f
755e478
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
---
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/65f01b5235c5424c262c8be8/QGK7V1u4uq9Co_b-EM4Go.jpeg)
## 概要

ArrowPro-7B-KUJIRAはMistral系のNTQAI/chatntq-ja-7b-v1.0をベースにAItuber、AIアシスタントの魂となるようにChat性能、および高いプロンプトインジェクション耐性を重視して作られました。

## ベンチマーク

ArrowPro-7B-KUJIRAはベンチマーク(ELYZA-TASK100)において約3.8(LLaMa3-70B準拠)をマークし、7Bにおいて日本語性能世界一を達成しました。

![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f01b5235c5424c262c8be8/xwR2f_msM-mJUAbdmlu4v.png)

## How to use
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("DataPilot/ArrowPro-7B-KUJIRA")
model = AutoModelForCausalLM.from_pretrained(
  "DataPilot/ArrowPro-7B-KUJIRA",
  torch_dtype="auto",
)
model.eval()

if torch.cuda.is_available():
    model = model.to("cuda")

def build_prompt(user_query):
    sys_msg = "あなたは日本語を話す優秀なアシスタントです。回答には必ず日本語で答えてください。"
    template = """[INST] <<SYS>>
{}
<</SYS>>

{}[/INST]"""
    return template.format(sys_msg,user_query)

# Infer with prompt without any additional input
user_inputs = {
    "user_query": "まどマギで一番かわいいキャラはだれ?",
}
prompt = build_prompt(**user_inputs)

input_ids = tokenizer.encode(
    prompt, 
    add_special_tokens=True, 
    return_tensors="pt"
)

tokens = model.generate(
    input_ids.to(device=model.device),
    max_new_tokens=500,
    temperature=1,
    top_p=0.95,
    do_sample=True,
)

out = tokenizer.decode(tokens[0][input_ids.shape[1]:], skip_special_tokens=True).strip()
print(out)
```

## 謝辞
助言を与えてくださったすべての皆様に感謝します。
また、元モデルの開発者の皆様にも感謝を申し上げます。

## お願い

このモデルを利用する際は他人に迷惑をかけないように最大限留意してください。