--- license: apache-2.0 --- ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/65f01b5235c5424c262c8be8/QGK7V1u4uq9Co_b-EM4Go.jpeg) ## 概要 ArrowPro-7B-KUJIRAはMistral系のNTQAI/chatntq-ja-7b-v1.0をベースにAItuber、AIアシスタントの魂となるようにChat性能を重視して作られました。 ## ベンチマーク ArrowPro-7B-KUJIRAはベンチマーク(ELYZA-TASK100)において約3.8(LLaMa3-70B準拠)をマークし、7Bにおいて日本語性能世界一を達成しました。 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65f01b5235c5424c262c8be8/xwR2f_msM-mJUAbdmlu4v.png) ## How to use ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("DataPilot/ArrowPro-7B-KUJIRA") model = AutoModelForCausalLM.from_pretrained( "DataPilot/ArrowPro-7B-KUJIRA", torch_dtype="auto", ) model.eval() if torch.cuda.is_available(): model = model.to("cuda") def build_prompt(user_query): sys_msg = "あなたは日本語を話す優秀なアシスタントです。回答には必ず日本語で答えてください。" template = """[INST] <> {} <> {}[/INST]""" return template.format(sys_msg,user_query) # Infer with prompt without any additional input user_inputs = { "user_query": "まどマギで一番かわいいキャラはだれ?", } prompt = build_prompt(**user_inputs) input_ids = tokenizer.encode( prompt, add_special_tokens=True, return_tensors="pt" ) tokens = model.generate( input_ids.to(device=model.device), max_new_tokens=500, temperature=1, top_p=0.95, do_sample=True, ) out = tokenizer.decode(tokens[0][input_ids.shape[1]:], skip_special_tokens=True).strip() print(out) ## 謝辞 助言を与えてくださったすべての皆様に感謝します。