File size: 3,571 Bytes
e525d0f
89bd182
 
 
 
 
 
 
 
 
 
e525d0f
 
89bd182
 
e525d0f
89bd182
e525d0f
89bd182
 
 
 
 
 
 
 
 
 
 
e525d0f
89bd182
e525d0f
89bd182
e525d0f
89bd182
e525d0f
89bd182
e525d0f
89bd182
e525d0f
89bd182
e525d0f
89bd182
e525d0f
89bd182
e525d0f
89bd182
 
 
 
 
 
 
 
 
 
 
 
e525d0f
89bd182
e525d0f
89bd182
 
 
 
 
 
 
 
 
 
e525d0f
 
89bd182
e525d0f
89bd182
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
library_name: peft
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- David-Xu/astronomy-stack-dpo-20-percent
base_model: meta-llama/Llama-2-7b-chat-hf
model-index:
- name: cira-7b-dpo-lora-merge
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# cira-7b-dpo-lora-merge

This model is a fine-tuned version of [David-Xu/llama-2-7b-cira-sft-v0.1-merge](https://huggingface.co/David-Xu/llama-2-7b-cira-sft-v0.1-merge) on the David-Xu/astronomy-stack-dpo-20-percent dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6183
- Rewards/chosen: 0.5535
- Rewards/rejected: 0.3385
- Rewards/accuracies: 0.6784
- Rewards/margins: 0.2150
- Logps/rejected: -652.2422
- Logps/chosen: -795.1126
- Logits/rejected: -1.1812
- Logits/chosen: -1.0305

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Logits/chosen | Logits/rejected | Logps/chosen | Logps/rejected | Validation Loss | Rewards/accuracies | Rewards/chosen | Rewards/margins | Rewards/rejected |
|:-------------:|:-----:|:----:|:-------------:|:---------------:|:------------:|:--------------:|:---------------:|:------------------:|:--------------:|:---------------:|:----------------:|
| 0.6618        | 0.11  | 100  | -0.8082       | -1.0029         | -823.6102    | -665.3923      | 0.6664          | 0.6432             | 0.2685         | 0.0615          | 0.2070           |
| 0.6079        | 0.22  | 200  | -1.0530       | -1.2188         | -794.3279    | -642.6389      | 0.6463          | 0.6508             | 0.5613         | 0.1268          | 0.4345           |
| 0.6029        | 0.33  | 300  | -1.0367       | -1.1965         | -793.2078    | -644.8513      | 0.6360          | 0.6558             | 0.5725         | 0.1601          | 0.4124           |
| 0.6123        | 0.45  | 400  | -1.1220       | -1.2658         | -787.7750    | -641.9633      | 0.6291          | 0.6608             | 0.6269         | 0.1856          | 0.4413           |
| 0.5596        | 0.56  | 500  | -1.0852       | -1.2330         | -790.7928    | -646.7930      | 0.6230          | 0.6683             | 0.5967         | 0.2037          | 0.3930           |
| 0.5382        | 0.67  | 600  | -1.0547       | -1.2034         | -793.2486    | -650.0926      | 0.6199          | 0.6709             | 0.5721         | 0.2121          | 0.3600           |
| 0.5952        | 0.78  | 700  | -1.0324       | -1.1827         | -794.9604    | -652.0420      | 0.6186          | 0.6784             | 0.5550         | 0.2145          | 0.3405           |
| 0.5792        | 0.89  | 800  | -1.0308       | -1.1812         | -795.125     | -652.2705      | 0.6182          | 0.6784             | 0.5534         | 0.2151          | 0.3382           |


### Framework versions

- PEFT 0.9.0
- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2