File size: 3,584 Bytes
e525d0f 89bd182 7764fd2 e525d0f 89bd182 e525d0f 89bd182 e525d0f 89bd182 e525d0f 89bd182 e525d0f 89bd182 e525d0f 89bd182 e525d0f 89bd182 e525d0f 89bd182 e525d0f 89bd182 e525d0f 89bd182 e525d0f 89bd182 e525d0f 89bd182 e525d0f 89bd182 e525d0f 89bd182 e525d0f 89bd182 e525d0f 89bd182 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
library_name: peft
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- David-Xu/astronomy-stack-dpo-20-percent
base_model: meta-llama/Llama-2-7b-chat-hf
model-index:
- name: cira-7b-dpo-lora-merge
results: []
license: mit
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cira-7b-dpo-lora-merge
This model is a fine-tuned version of [David-Xu/llama-2-7b-cira-sft-v0.1-merge](https://huggingface.co/David-Xu/llama-2-7b-cira-sft-v0.1-merge) on the David-Xu/astronomy-stack-dpo-20-percent dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6183
- Rewards/chosen: 0.5535
- Rewards/rejected: 0.3385
- Rewards/accuracies: 0.6784
- Rewards/margins: 0.2150
- Logps/rejected: -652.2422
- Logps/chosen: -795.1126
- Logits/rejected: -1.1812
- Logits/chosen: -1.0305
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Logits/chosen | Logits/rejected | Logps/chosen | Logps/rejected | Validation Loss | Rewards/accuracies | Rewards/chosen | Rewards/margins | Rewards/rejected |
|:-------------:|:-----:|:----:|:-------------:|:---------------:|:------------:|:--------------:|:---------------:|:------------------:|:--------------:|:---------------:|:----------------:|
| 0.6618 | 0.11 | 100 | -0.8082 | -1.0029 | -823.6102 | -665.3923 | 0.6664 | 0.6432 | 0.2685 | 0.0615 | 0.2070 |
| 0.6079 | 0.22 | 200 | -1.0530 | -1.2188 | -794.3279 | -642.6389 | 0.6463 | 0.6508 | 0.5613 | 0.1268 | 0.4345 |
| 0.6029 | 0.33 | 300 | -1.0367 | -1.1965 | -793.2078 | -644.8513 | 0.6360 | 0.6558 | 0.5725 | 0.1601 | 0.4124 |
| 0.6123 | 0.45 | 400 | -1.1220 | -1.2658 | -787.7750 | -641.9633 | 0.6291 | 0.6608 | 0.6269 | 0.1856 | 0.4413 |
| 0.5596 | 0.56 | 500 | -1.0852 | -1.2330 | -790.7928 | -646.7930 | 0.6230 | 0.6683 | 0.5967 | 0.2037 | 0.3930 |
| 0.5382 | 0.67 | 600 | -1.0547 | -1.2034 | -793.2486 | -650.0926 | 0.6199 | 0.6709 | 0.5721 | 0.2121 | 0.3600 |
| 0.5952 | 0.78 | 700 | -1.0324 | -1.1827 | -794.9604 | -652.0420 | 0.6186 | 0.6784 | 0.5550 | 0.2145 | 0.3405 |
| 0.5792 | 0.89 | 800 | -1.0308 | -1.1812 | -795.125 | -652.2705 | 0.6182 | 0.6784 | 0.5534 | 0.2151 | 0.3382 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.36.2
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2 |