Davlan commited on
Commit
bc53675
1 Parent(s): 08bdd65

adding wolof ber

Browse files
README.md ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Hugging Face's logo
2
+ ---
3
+ language: wo
4
+ datasets:
5
+
6
+ ---
7
+ # bert-base-multilingual-cased-finetuned-wolof
8
+ ## Model description
9
+ **bert-base-multilingual-cased-finetuned-wolof** is a **Wolof BERT** model obtained by fine-tuning **bert-base-multilingual-cased** model on Wolof language texts. It provides **better performance** than the multilingual BERT on text classification and named entity recognition datasets.
10
+
11
+ Specifically, this model is a *bert-base-multilingual-cased* model that was fine-tuned on Wolof corpus.
12
+ ## Intended uses & limitations
13
+ #### How to use
14
+ You can use this model with Transformers *pipeline* for masked token prediction.
15
+ ```python
16
+ >>> from transformers import pipeline
17
+ >>> unmasker = pipeline('fill-mask', model='Davlan/bert-base-multilingual-cased-finetuned-wolof')
18
+ >>> unmasker("Màkki Sàll feeñal na ay xalaatam ci mbir yu am solo yu soxal [MASK] ak Afrik.")
19
+
20
+ ```
21
+ #### Limitations and bias
22
+ This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains.
23
+ ## Training data
24
+ This model was fine-tuned on [Bible OT](http://biblewolof.com/) + [OPUS](https://opus.nlpl.eu/) + News Corpora (Lu Defu Waxu, Saabal, and Wolof Online)
25
+
26
+ ## Training procedure
27
+ This model was trained on a single NVIDIA V100 GPU
28
+
29
+ ## Eval results on Test set (F-score, average over 5 runs)
30
+ Dataset| mBERT F1 | wo_bert F1
31
+ -|-|-
32
+ [MasakhaNER](https://github.com/masakhane-io/masakhane-ner) | 64.52 | 69.43
33
+
34
+ ### BibTeX entry and citation info
35
+ By David Adelani
36
+ ```
37
+
38
+ ```
39
+
40
+
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bert-base-multilingual-cased",
3
+ "architectures": [
4
+ "BertForMaskedLM"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "directionality": "bidi",
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "pooler_fc_size": 768,
21
+ "pooler_num_attention_heads": 12,
22
+ "pooler_num_fc_layers": 3,
23
+ "pooler_size_per_head": 128,
24
+ "pooler_type": "first_token_transform",
25
+ "position_embedding_type": "absolute",
26
+ "transformers_version": "4.4.2",
27
+ "type_vocab_size": 2,
28
+ "use_cache": true,
29
+ "vocab_size": 119547
30
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c885944c9ec04c864ae3aa5b2b3586d57791517190612c2f9dfda323b2dc4541
3
+ size 711988242
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": false, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "bert-base-multilingual-cased"}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d414b0b1bb9bef62d2232fc19e157c663e49cd018f33bbef9489b2b17204794
3
+ size 2287
vocab.txt ADDED
The diff for this file is too large to render. See raw diff