Pipeline generated with ```python import torch from diffusers import AutoencoderKL, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler, StableDiffusion3Pipeline from transformers import CLIPTextConfig, CLIPTextModelWithProjection, T5EncoderModel, CLIPTokenizer, AutoTokenizer def get_dummy_components_sd3(): torch.manual_seed(0) transformer = SD3Transformer2DModel( sample_size=32, patch_size=1, in_channels=8, num_layers=4, attention_head_dim=8, num_attention_heads=4, joint_attention_dim=32, caption_projection_dim=32, pooled_projection_dim=64, out_channels=8, ) torch.manual_seed(0) clip_text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act="gelu", projection_dim=32, ) torch.manual_seed(0) text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config) torch.manual_seed(0) text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config) torch.manual_seed(0) text_encoder_3 = T5EncoderModel.from_pretrained("./tiny-random-t5") tokenizer = CLIPTokenizer.from_pretrained("./tiny-random-clip") tokenizer_2 = CLIPTokenizer.from_pretrained("./tiny-random-clip") tokenizer_3 = AutoTokenizer.from_pretrained("./tiny-random-t5") torch.manual_seed(0) vae = AutoencoderKL( sample_size=32, in_channels=3, out_channels=3, block_out_channels=(4,), layers_per_block=1, latent_channels=8, norm_num_groups=1, use_quant_conv=False, use_post_quant_conv=False, shift_factor=0.0609, scaling_factor=1.5035, ) scheduler = FlowMatchEulerDiscreteScheduler() return { "scheduler": scheduler, "text_encoder": text_encoder, "text_encoder_2": text_encoder_2, "text_encoder_3": text_encoder_3, "tokenizer": tokenizer, "tokenizer_2": tokenizer_2, "tokenizer_3": tokenizer_3, "transformer": transformer, "vae": vae, } if __name__ == "__main__": components = get_dummy_components_sd3() pipeline = StableDiffusion3Pipeline(**components) pipeline.push_to_hub("DavyMorgan/tiny-sd3-pipe") ```