File size: 44,552 Bytes
ae2e28c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
import itertools
from functools import partial
from typing import Any, Dict, Tuple, Callable
from typing import Union, Optional, List

import numpy as np
import torch
from diffusers import DPMSolverMultistepScheduler
from diffusers import StableDiffusionPipeline, AutoencoderKL
from diffusers import Transformer2DModel, ModelMixin, ConfigMixin
from diffusers import UNet2DConditionModel
from diffusers.configuration_utils import register_to_config
from diffusers.models.attention import BasicTransformerBlock
from diffusers.models.resnet import ResnetBlock2D, Downsample2D, Upsample2D
from diffusers.models.transformer_2d import Transformer2DModelOutput
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker, StableDiffusionPipelineOutput
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import replace_example_docstring
from torch import nn
from transformers import CLIPTextModel, CLIPTokenizer, CLIPImageProcessor


def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """
    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg


def custom_sort_order(obj):
    """
    Key function for sorting order of execution in forward methods
    """
    return {ResnetBlock2D: 0, Transformer2DModel: 1, FlexibleTransformer2DModel: 1}.get(obj.__class__)


def squeeze_to_len_n_starting_from_index_i(n, i, timestep_spacing):
    """
    :param timestep_spacing: the timestep_spacing array we want to squeeze
    :param n: the size of the squeezed array
    :param i: the index we start squeezing from
    :return: squeezed timestep_spacing
    Example:
    timesteps = np.array([967, 907, 846, 786, 725, 665, 604, 544, 484, 423, 363, 302, 242, 181, 121, 60]) (len=16)
    n = 10, i = 6
    Expected:
    [967, 907, 846, 786, 725, 665, 4k, 3k, 2k, k], and if we define 665=5k => k = 133
    """
    assert i < n
    squeezed = np.flip(np.arange(n)) + 1  # [n, n-1, ..., 2, 1]
    squeezed[:i] = timestep_spacing[:i]
    k = squeezed[i - 1] // (n - i + 1)
    squeezed[i:] *= k

    return squeezed


PREDEFINED_TIMESTEP_SQUEEZERS = {
    # Tested with DPM 16-steps (reduced 16 -> 10 or 11 steps)
    "10,6": partial(squeeze_to_len_n_starting_from_index_i, 10, 6),
    "11,7": partial(squeeze_to_len_n_starting_from_index_i, 11, 7),
}

FlexibleUnetConfigurations = {
    # General parameters for all blocks
    "sample_size": 64,
    "temb_dim": 320 * 4,
    "resnet_eps": 1e-5,
    "resnet_act_fn": "silu",
    "num_attention_heads": 8,
    "cross_attention_dim": 768,
    # Controls modules execute order in unet's forward
    "mix_block_in_forward": True,
    # Down blocks parameters
    "down_blocks_in_channels": [320, 320, 640],
    "down_blocks_out_channels": [320, 640, 1280],
    "down_blocks_num_attentions": [0, 1, 3],
    "down_blocks_num_resnets": [2, 2, 1],
    "add_downsample": [True, True, False],
    # Middle block parameters
    "add_upsample_mid_block": None,
    "mid_num_resnets": 0,
    "mid_num_attentions": 0,
    # Up block parameters
    "prev_output_channels": [1280, 1280, 640],
    "up_blocks_num_attentions": [5, 3, 0],
    "up_blocks_num_resnets": [2, 3, 3],
    "add_upsample": [True, True, False],
}


class SqueezedDPMSolverMultistepScheduler(DPMSolverMultistepScheduler):
    """
    This is a copy-paste from Diffuser's `DPMSolverMultistepScheduler`, with minor differences:
    * Defaults are modified to accommodate DeciDiffusion
    * It supports a squeezer to squeeze the number of inference steps to a smaller number
    //!\\ IMPORTANT: the actual number of inference steps is deduced by the squeezer, and not the pipeline!
    """

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "squaredcos_cap_v2",  # NOTE THIS DEFAULT VALUE
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
        solver_order: int = 2,
        prediction_type: str = "v_prediction",  # NOTE THIS DEFAULT VALUE
        thresholding: bool = False,
        dynamic_thresholding_ratio: float = 0.995,
        sample_max_value: float = 1.0,
        algorithm_type: str = "dpmsolver++",
        solver_type: str = "heun",  # NOTE THIS DEFAULT VALUE
        lower_order_final: bool = True,
        use_karras_sigmas: Optional[bool] = False,
        lambda_min_clipped: float = -3.0,  # NOTE THIS DEFAULT VALUE
        variance_type: Optional[str] = None,
        timestep_spacing: str = "linspace",
        steps_offset: int = 1,
        squeeze_mode: Optional[str] = None,  # NOTE THIS ADDITION. Supports keys from `PREDEFINED_TIMESTEP_SQUEEZERS` defined above
    ):
        self._squeezer = PREDEFINED_TIMESTEP_SQUEEZERS.get(squeeze_mode)

        if use_karras_sigmas:
            raise NotImplementedError("Squeezing isn't tested with `use_karras_sigmas`. Please provide `use_karras_sigmas=False`")

        super().__init__(
            num_train_timesteps=num_train_timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
            trained_betas=trained_betas,
            solver_order=solver_order,
            prediction_type=prediction_type,
            thresholding=thresholding,
            dynamic_thresholding_ratio=dynamic_thresholding_ratio,
            sample_max_value=sample_max_value,
            algorithm_type=algorithm_type,
            solver_type=solver_type,
            lower_order_final=lower_order_final,
            use_karras_sigmas=False,
            lambda_min_clipped=lambda_min_clipped,
            variance_type=variance_type,
            timestep_spacing=timestep_spacing,
            steps_offset=steps_offset,
        )

    def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
        """
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).

        Args:
            num_inference_steps (`int`):
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        """
        super().set_timesteps(num_inference_steps=num_inference_steps, device=device)
        if self._squeezer is not None:
            timesteps = self._squeezer(self.timesteps.cpu())
            sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
            sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
            sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
            self.sigmas = torch.from_numpy(sigmas)
            self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
            self.num_inference_steps = len(timesteps)


class FlexibleIdentityBlock(nn.Module):
    def forward(
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
    ):
        return hidden_states


class FlexibleUNet2DConditionModel(UNet2DConditionModel, ModelMixin):
    configurations = FlexibleUnetConfigurations

    @register_to_config
    def __init__(self):
        super().__init__(
            sample_size=self.configurations.get("sample_size", FlexibleUnetConfigurations["sample_size"]),
            cross_attention_dim=self.configurations.get("cross_attention_dim", FlexibleUnetConfigurations["cross_attention_dim"]),
        )

        num_attention_heads = self.configurations.get("num_attention_heads")
        cross_attention_dim = self.configurations.get("cross_attention_dim")
        mix_block_in_forward = self.configurations.get("mix_block_in_forward")
        resnet_act_fn = self.configurations.get("resnet_act_fn")
        resnet_eps = self.configurations.get("resnet_eps")
        temb_dim = self.configurations.get("temb_dim")

        ###############
        # Down blocks #
        ###############
        down_blocks_num_attentions = self.configurations.get("down_blocks_num_attentions")
        down_blocks_out_channels = self.configurations.get("down_blocks_out_channels")
        down_blocks_in_channels = self.configurations.get("down_blocks_in_channels")
        down_blocks_num_resnets = self.configurations.get("down_blocks_num_resnets")
        add_downsample = self.configurations.get("add_downsample")

        self.down_blocks = nn.ModuleList()

        for i, (in_c, out_c, n_res, n_att, add_down) in enumerate(
            zip(down_blocks_in_channels, down_blocks_out_channels, down_blocks_num_resnets, down_blocks_num_attentions, add_downsample)
        ):
            last_block = i == len(down_blocks_in_channels) - 1
            self.down_blocks.append(
                FlexibleCrossAttnDownBlock2D(
                    in_channels=in_c,
                    out_channels=out_c,
                    temb_channels=temb_dim,
                    num_resnets=n_res,
                    num_attentions=n_att,
                    resnet_eps=resnet_eps,
                    resnet_act_fn=resnet_act_fn,
                    num_attention_heads=num_attention_heads,
                    cross_attention_dim=cross_attention_dim,
                    add_downsample=add_down,
                    last_block=last_block,
                    mix_block_in_forward=mix_block_in_forward,
                )
            )

        ###############
        # Mid blocks  #
        ###############

        mid_block_add_upsample = self.configurations.get("add_upsample_mid_block")
        mid_num_attentions = self.configurations.get("mid_num_attentions")
        mid_num_resnets = self.configurations.get("mid_num_resnets")

        if mid_num_resnets == mid_num_attentions == 0:
            self.mid_block = FlexibleIdentityBlock()
        else:
            self.mid_block = FlexibleUNetMidBlock2DCrossAttn(
                in_channels=down_blocks_out_channels[-1],
                temb_channels=temb_dim,
                resnet_act_fn=resnet_act_fn,
                resnet_eps=resnet_eps,
                cross_attention_dim=cross_attention_dim,
                num_attention_heads=num_attention_heads,
                num_resnets=mid_num_resnets,
                num_attentions=mid_num_attentions,
                mix_block_in_forward=mix_block_in_forward,
                add_upsample=mid_block_add_upsample,
            )

        ###############
        #  Up blocks  #
        ###############

        up_blocks_num_attentions = self.configurations.get("up_blocks_num_attentions")
        up_blocks_num_resnets = self.configurations.get("up_blocks_num_resnets")
        prev_output_channels = self.configurations.get("prev_output_channels")
        up_upsample = self.configurations.get("add_upsample")

        self.up_blocks = nn.ModuleList()
        for in_c, out_c, prev_out, n_res, n_att, add_up in zip(
            reversed(down_blocks_in_channels),
            reversed(down_blocks_out_channels),
            prev_output_channels,
            up_blocks_num_resnets,
            up_blocks_num_attentions,
            up_upsample,
        ):
            self.up_blocks.append(
                FlexibleCrossAttnUpBlock2D(
                    in_channels=in_c,
                    out_channels=out_c,
                    prev_output_channel=prev_out,
                    temb_channels=temb_dim,
                    num_resnets=n_res,
                    num_attentions=n_att,
                    resnet_eps=resnet_eps,
                    resnet_act_fn=resnet_act_fn,
                    num_attention_heads=num_attention_heads,
                    cross_attention_dim=cross_attention_dim,
                    add_upsample=add_up,
                    mix_block_in_forward=mix_block_in_forward,
                )
            )


class FlexibleCrossAttnDownBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_resnets: int = 1,
        num_attentions: int = 1,
        transformer_layers_per_block: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        num_attention_heads: int = 1,
        cross_attention_dim: int = 1280,
        output_scale_factor: float = 1.0,
        downsample_padding: int = 1,
        add_downsample: bool = True,
        use_linear_projection: bool = False,
        only_cross_attention: bool = False,
        upcast_attention: bool = False,
        last_block: bool = False,
        mix_block_in_forward: bool = True,
    ):
        super().__init__()

        self.last_block = last_block
        self.mix_block_in_forward = mix_block_in_forward
        self.has_cross_attention = True
        self.num_attention_heads = num_attention_heads

        modules = []

        add_resnets = [True] * num_resnets
        add_cross_attentions = [True] * num_attentions
        for i, (add_resnet, add_cross_attention) in enumerate(itertools.zip_longest(add_resnets, add_cross_attentions, fillvalue=False)):
            in_channels = in_channels if i == 0 else out_channels
            if add_resnet:
                modules.append(
                    ResnetBlock2D(
                        in_channels=in_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                    )
                )
            if add_cross_attention:
                modules.append(
                    FlexibleTransformer2DModel(
                        num_attention_heads=num_attention_heads,
                        attention_head_dim=out_channels // num_attention_heads,
                        in_channels=out_channels,
                        num_layers=transformer_layers_per_block,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                        use_linear_projection=use_linear_projection,
                        only_cross_attention=only_cross_attention,
                        upcast_attention=upcast_attention,
                    )
                )

        if not mix_block_in_forward:
            modules = sorted(modules, key=custom_sort_order)

        self.modules_list = nn.ModuleList(modules)

        if add_downsample:
            self.downsamplers = nn.ModuleList([Downsample2D(out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op")])
        else:
            self.downsamplers = None

        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
    ):
        output_states = ()

        for module in self.modules_list:
            if isinstance(module, ResnetBlock2D):
                hidden_states = module(hidden_states, temb)
            elif isinstance(module, (FlexibleTransformer2DModel, Transformer2DModel)):
                hidden_states = module(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )[0]
            else:
                raise ValueError(f"Got an unexpected module in modules list! {type(module)}")
            if isinstance(module, ResnetBlock2D):
                output_states = output_states + (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            if not self.last_block:
                output_states = output_states + (hidden_states,)

        return hidden_states, output_states


class FlexibleCrossAttnUpBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_resnets: int = 1,
        num_attentions: int = 1,
        transformer_layers_per_block: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        num_attention_heads: int = 1,
        cross_attention_dim: int = 1280,
        output_scale_factor: float = 1.0,
        add_upsample: bool = True,
        use_linear_projection: bool = False,
        only_cross_attention: bool = False,
        upcast_attention: bool = False,
        mix_block_in_forward: bool = True,
    ):
        super().__init__()
        modules = []

        # WARNING: This parameter is filled with number of resnets and used within StableDiffusionPipeline
        self.resnets = []

        self.has_cross_attention = True
        self.num_attention_heads = num_attention_heads

        add_resnets = [True] * num_resnets
        add_cross_attentions = [True] * num_attentions
        for i, (add_resnet, add_cross_attention) in enumerate(itertools.zip_longest(add_resnets, add_cross_attentions, fillvalue=False)):
            res_skip_channels = in_channels if (i == len(add_resnets) - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            if add_resnet:
                self.resnets += [True]
                modules.append(
                    ResnetBlock2D(
                        in_channels=resnet_in_channels + res_skip_channels,
                        out_channels=out_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                    )
                )
            if add_cross_attention:
                modules.append(
                    FlexibleTransformer2DModel(
                        num_attention_heads,
                        out_channels // num_attention_heads,
                        in_channels=out_channels,
                        num_layers=transformer_layers_per_block,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                        use_linear_projection=use_linear_projection,
                        only_cross_attention=only_cross_attention,
                        upcast_attention=upcast_attention,
                    )
                )

        if not mix_block_in_forward:
            modules = sorted(modules, key=custom_sort_order)

        self.modules_list = nn.ModuleList(modules)

        self.upsamplers = None
        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])

        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        upsample_size: Optional[int] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
    ):

        for module in self.modules_list:
            if isinstance(module, ResnetBlock2D):
                res_hidden_states = res_hidden_states_tuple[-1]
                res_hidden_states_tuple = res_hidden_states_tuple[:-1]
                hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
                hidden_states = module(hidden_states, temb)
            if isinstance(module, (FlexibleTransformer2DModel, Transformer2DModel)):
                hidden_states = module(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )[0]

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states, upsample_size)

        return hidden_states


class FlexibleUNetMidBlock2DCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_resnets: int = 1,
        num_attentions: int = 1,
        transformer_layers_per_block: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        num_attention_heads: int = 1,
        output_scale_factor: float = 1.0,
        cross_attention_dim: int = 1280,
        use_linear_projection: bool = False,
        upcast_attention: bool = False,
        mix_block_in_forward: bool = True,
        add_upsample: bool = True,
    ):
        super().__init__()

        self.has_cross_attention = True
        self.num_attention_heads = num_attention_heads
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
        # There is always at least one resnet
        modules = [
            ResnetBlock2D(
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]

        add_resnets = [True] * num_resnets
        add_cross_attentions = [True] * num_attentions
        for i, (add_resnet, add_cross_attention) in enumerate(itertools.zip_longest(add_resnets, add_cross_attentions, fillvalue=False)):
            if add_cross_attention:
                modules.append(
                    FlexibleTransformer2DModel(
                        num_attention_heads,
                        in_channels // num_attention_heads,
                        in_channels=in_channels,
                        num_layers=transformer_layers_per_block,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                        use_linear_projection=use_linear_projection,
                        upcast_attention=upcast_attention,
                    )
                )

            if add_resnet:
                modules.append(
                    ResnetBlock2D(
                        in_channels=in_channels,
                        out_channels=in_channels,
                        temb_channels=temb_channels,
                        eps=resnet_eps,
                        groups=resnet_groups,
                        dropout=dropout,
                        time_embedding_norm=resnet_time_scale_shift,
                        non_linearity=resnet_act_fn,
                        output_scale_factor=output_scale_factor,
                        pre_norm=resnet_pre_norm,
                    )
                )
        if not mix_block_in_forward:
            modules = sorted(modules, key=custom_sort_order)

        self.modules_list = nn.ModuleList(modules)

        self.upsamplers = nn.ModuleList([nn.Identity()])
        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(in_channels, use_conv=True, out_channels=in_channels)])

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        temb: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        hidden_states = self.modules_list[0](hidden_states, temb)

        for module in self.modules_list:
            if isinstance(module, (FlexibleTransformer2DModel, Transformer2DModel)):
                hidden_states = module(
                    hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cross_attention_kwargs=cross_attention_kwargs,
                    attention_mask=attention_mask,
                    encoder_attention_mask=encoder_attention_mask,
                    return_dict=False,
                )[0]
            elif isinstance(module, ResnetBlock2D):
                hidden_states = module(hidden_states, temb)

        for upsampler in self.upsamplers:
            hidden_states = upsampler(hidden_states)

        return hidden_states


class FlexibleTransformer2DModel(ModelMixin, ConfigMixin):
    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        out_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        only_cross_attention: bool = False,
        use_linear_projection: bool = False,
        upcast_attention: bool = False,
        norm_type: str = "layer_norm",
        norm_elementwise_affine: bool = True,
    ):
        super().__init__()
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        self.in_channels = in_channels
        inner_dim = num_attention_heads * attention_head_dim

        # Define input layers
        self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
        self.use_linear_projection = use_linear_projection
        if self.use_linear_projection:
            self.proj_in = nn.Linear(in_channels, inner_dim)
        else:
            self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)

        # Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                    attention_bias=attention_bias,
                    only_cross_attention=only_cross_attention,
                    upcast_attention=upcast_attention,
                    norm_type=norm_type,
                    norm_elementwise_affine=norm_elementwise_affine,
                )
                for _ in range(num_layers)
            ]
        )

        # Define output layers
        self.out_channels = in_channels if out_channels is None else out_channels
        if self.use_linear_projection:
            self.proj_out = nn.Linear(inner_dim, in_channels)
        else:
            self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        class_labels: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        return_dict: bool = False,
    ):
        # 1. Input
        batch, _, height, width = hidden_states.shape
        residual = hidden_states

        hidden_states = self.norm(hidden_states)
        if not self.use_linear_projection:
            hidden_states = self.proj_in(hidden_states)
            inner_dim = hidden_states.shape[1]
            hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
        else:
            inner_dim = hidden_states.shape[1]
            hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
            hidden_states = self.proj_in(hidden_states)

        # 2. Blocks
        for block in self.transformer_blocks:
            hidden_states = block(
                hidden_states,
                attention_mask=attention_mask,
                encoder_hidden_states=encoder_hidden_states,
                encoder_attention_mask=encoder_attention_mask,
                timestep=timestep,
                cross_attention_kwargs=cross_attention_kwargs,
                class_labels=class_labels,
            )

        # 3. Output
        if not self.use_linear_projection:
            hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
            hidden_states = self.proj_out(hidden_states)
        else:
            hidden_states = self.proj_out(hidden_states)
            hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()

        output = hidden_states + residual
        if return_dict:
            return (output,)
        return Transformer2DModelOutput(sample=output)


class DeciDiffusionPipeline(StableDiffusionPipeline):
    deci_default_squeeze_mode = "10,6"
    deci_default_number_of_iterations = 16
    deci_default_guidance_rescale = 0.7

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPImageProcessor,
        requires_safety_checker: bool = True,
    ):
        # Replace UNet with Deci`s unet
        del unet
        unet = FlexibleUNet2DConditionModel()

        # Replace with custom scheduler
        del scheduler
        scheduler = SqueezedDPMSolverMultistepScheduler(squeeze_mode=self.deci_default_squeeze_mode)

        super().__init__(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
            requires_safety_checker=requires_safety_checker,
        )

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
        )

    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 16,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0.7,
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that calls every `callback_steps` steps during inference. The function is called with the
                following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function is called. If not specified, the callback is called at
                every step.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            guidance_rescale (`float`, *optional*, defaults to 0.7):
                Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
                Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when
                using zero terminal SNR.

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
        """
        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds)

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
        text_encoder_lora_scale = cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=text_encoder_lora_scale,
        )
        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        if do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs.
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=len(timesteps)) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
                    return_dict=False,
                )[0]

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                if do_classifier_free_guidance and guidance_rescale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)

        if not output_type == "latent":
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
        else:
            image = latents
            has_nsfw_concept = None

        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
        else:
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)