--- language: - it pipeline_tag: token-classification --- # Universal NER for Italian (Zero-Shot) ## Model Description This model is designed for Named Entity Recognition (NER) tasks, specifically tailored for the Italian language. It employs a zero-shot learning approach, enabling it to identify a wide range of entities without the need for specific training on those entities. This makes it incredibly versatile for various applications requiring entity extraction from Italian text. ## Model Performance - **Inference Time:** The model runs on CPUs, with an inference time of 0.01 seconds on a GPU. Performance on a CPU will vary depending on the specific hardware configuration. ## Try It Out You can test the model directly in your browser through the following Hugging Face Spaces link: [https://huggingface.co/spaces/DeepMount00/universal_ner_ita](https://huggingface.co/spaces/DeepMount00/universal_ner_ita). It's important to note that **this model is universal and operates across all domains**. However, if you are seeking performance metrics close to a 90/99% F1 score for a specific domain, you are encouraged to reach out via email to Michele Montebovi at montebovi.michele@gmail.com. This direct contact allows for the possibility of customizing the model to achieve enhanced performance tailored to your unique entity recognition requirements in the Italian language. # Installation To use this model, you must download the GLiNER repository and install its dependencies!!: ``` !git clone https://github.com/urchade/GLiNER.git %cd GLiNER !pip install -r requirements.txt ``` # Usage ```python from model import GLiNER model = GLiNER.from_pretrained("DeepMount00/universal_ner_ita") text = """ Il comune di Castelrosso, con codice fiscale 80012345678, ha approvato il finanziamento di 15.000€ destinati alla ristrutturazione del parco giochi cittadino, affidando l'incarico alla società 'Verde Vivo Società Cooperativa', con sede legale in Corso della Libertà 45, Verona, da completarsi entro il 30/09/2024. """ labels = ["comune", "codice fiscale", "importo", "società", "indirizzo", "data di completamento"] entities = model.predict_entities(text, labels) max_length = max(len(entity["text"]) for entity in entities) for entity in entities: padded_text = entity["text"].ljust(max_length) print(f"{padded_text} => {entity['label']}") ```