feat: readme
Browse files
README.md
CHANGED
@@ -1,3 +1,386 @@
|
|
1 |
---
|
2 |
license: openrail
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: openrail
|
3 |
+
language:
|
4 |
+
- ru
|
5 |
+
pipeline_tag: text-generation
|
6 |
---
|
7 |
+
---
|
8 |
+
language:
|
9 |
+
- ru
|
10 |
+
---
|
11 |
+
|
12 |
+
# Model Card for Model ID
|
13 |
+
|
14 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
15 |
+
|
16 |
+
# Model Details
|
17 |
+
|
18 |
+
## Model Description
|
19 |
+
|
20 |
+
<!-- Provide a longer summary of what this model is. -->
|
21 |
+
|
22 |
+
- **Developed by:** Deeppavlov team
|
23 |
+
- **Model type:** seq2seq
|
24 |
+
- **Language(s) (NLP):** Russian
|
25 |
+
- **License:** MIT
|
26 |
+
- **Finetuned from model:** [facebook/mbart-large-50](facebook/mbart-large-50)
|
27 |
+
|
28 |
+
|
29 |
+
# Uses
|
30 |
+
|
31 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
32 |
+
|
33 |
+
|
34 |
+
## Direct Use
|
35 |
+
|
36 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
37 |
+
|
38 |
+
```python
|
39 |
+
from typing import List, TypedDict
|
40 |
+
from dataclasses import dataclass
|
41 |
+
from itertools import chain
|
42 |
+
|
43 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
44 |
+
import torch
|
45 |
+
|
46 |
+
|
47 |
+
@dataclass
|
48 |
+
class H2PersonaChatHyperparametersV1:
|
49 |
+
"""
|
50 |
+
chat_history_pair_length: int - количество пар диалога с конца
|
51 |
+
"""
|
52 |
+
|
53 |
+
model_name: str = "facebook/bart-base"
|
54 |
+
chat_history_pair_length: int = 7
|
55 |
+
|
56 |
+
persona_max_length: int = 14
|
57 |
+
chat_max_length: int = 25
|
58 |
+
|
59 |
+
debug_status: int = 0
|
60 |
+
|
61 |
+
|
62 |
+
class PersonaChatDatasetSampleV1(TypedDict):
|
63 |
+
"""
|
64 |
+
persona: List[str] - набор предложений фактов персоны
|
65 |
+
history: List[str] - набор предложений истории переписки
|
66 |
+
"""
|
67 |
+
|
68 |
+
persona: List[str]
|
69 |
+
history: List[str]
|
70 |
+
sample_id: str
|
71 |
+
|
72 |
+
|
73 |
+
class H2Seq2SeqInferenceSampleDictV1(TypedDict):
|
74 |
+
input_ids: List[int]
|
75 |
+
attention_mask: List[int]
|
76 |
+
|
77 |
+
|
78 |
+
class H2Seq2SeqInferenceSampleDictV2(TypedDict):
|
79 |
+
input_ids: torch.Tensor
|
80 |
+
attention_mask: torch.Tensor
|
81 |
+
|
82 |
+
|
83 |
+
def flat_list(list_of_lists: List[List]) -> List:
|
84 |
+
return list(chain.from_iterable(list_of_lists))
|
85 |
+
|
86 |
+
|
87 |
+
class H2Seq2SeqInferencePersonaSampleV1:
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
dataset_sample: PersonaChatDatasetSampleV1,
|
91 |
+
tokenizer: AutoTokenizer,
|
92 |
+
hyperparameters: H2PersonaChatHyperparametersV1,
|
93 |
+
) -> None:
|
94 |
+
self.dataset_sample = dataset_sample
|
95 |
+
self.tokenizer = tokenizer
|
96 |
+
self.hyperparameters = hyperparameters
|
97 |
+
|
98 |
+
def add_spaces_after(
|
99 |
+
self,
|
100 |
+
items: List[str],
|
101 |
+
) -> List[str]:
|
102 |
+
items = [item + " " for item in items]
|
103 |
+
return items
|
104 |
+
|
105 |
+
@property
|
106 |
+
def bos_token_id(self):
|
107 |
+
if "t5" in self.hyperparameters.model_name:
|
108 |
+
return []
|
109 |
+
|
110 |
+
if self.tokenizer.bos_token_id is None:
|
111 |
+
return []
|
112 |
+
|
113 |
+
return [self.tokenizer.bos_token_id]
|
114 |
+
|
115 |
+
@property
|
116 |
+
def eos_token_id(self):
|
117 |
+
if self.tokenizer.eos_token_id is None:
|
118 |
+
return []
|
119 |
+
|
120 |
+
return [self.tokenizer.eos_token_id]
|
121 |
+
|
122 |
+
def add_sep_beetween(self, items: List[str], sep=" EOS ") -> List[str]:
|
123 |
+
for i in range(1, len(items)):
|
124 |
+
items[i] = sep + items[i]
|
125 |
+
|
126 |
+
return items
|
127 |
+
|
128 |
+
def add_spaces_between(self, items: List[str]) -> List[str]:
|
129 |
+
items = self.add_spaces_after(items)
|
130 |
+
items[-1] = items[-1].strip()
|
131 |
+
return items
|
132 |
+
|
133 |
+
def get_sample(self) -> H2Seq2SeqInferenceSampleDictV1:
|
134 |
+
|
135 |
+
dialog_history = self.dataset_sample["history"]
|
136 |
+
dialog_history = dialog_history[-self.hyperparameters.chat_history_pair_length * 2 - 1 :]
|
137 |
+
dialog_history = self.add_sep_beetween(dialog_history)
|
138 |
+
|
139 |
+
persona = self.dataset_sample["persona"]
|
140 |
+
persona = self.add_sep_beetween(
|
141 |
+
persona,
|
142 |
+
sep=" ",
|
143 |
+
)
|
144 |
+
|
145 |
+
KNOWLEDGE_IDS = self.tokenizer.encode(
|
146 |
+
" [KNOWLEDGE] ",
|
147 |
+
add_special_tokens=False,
|
148 |
+
)
|
149 |
+
CONTEXT_IDS = self.tokenizer.encode(
|
150 |
+
" [CONTEXT]",
|
151 |
+
add_special_tokens=False,
|
152 |
+
)
|
153 |
+
|
154 |
+
encoded_history = self.tokenizer.batch_encode_plus(
|
155 |
+
dialog_history,
|
156 |
+
add_special_tokens=False,
|
157 |
+
truncation=True,
|
158 |
+
max_length=self.hyperparameters.chat_max_length,
|
159 |
+
)
|
160 |
+
encoded_history = flat_list(encoded_history["input_ids"])
|
161 |
+
|
162 |
+
encoded_persona = self.tokenizer.batch_encode_plus(
|
163 |
+
persona,
|
164 |
+
add_special_tokens=False,
|
165 |
+
truncation=True,
|
166 |
+
max_length=self.hyperparameters.persona_max_length,
|
167 |
+
)
|
168 |
+
|
169 |
+
encoded_persona = flat_list(encoded_persona["input_ids"])
|
170 |
+
|
171 |
+
input_ids = [
|
172 |
+
*self.bos_token_id,
|
173 |
+
*CONTEXT_IDS,
|
174 |
+
*encoded_history,
|
175 |
+
*KNOWLEDGE_IDS,
|
176 |
+
*encoded_persona,
|
177 |
+
*self.eos_token_id,
|
178 |
+
]
|
179 |
+
|
180 |
+
attention_mask = [1] * len(input_ids)
|
181 |
+
|
182 |
+
return H2Seq2SeqInferenceSampleDictV1(
|
183 |
+
input_ids=input_ids,
|
184 |
+
attention_mask=attention_mask,
|
185 |
+
)
|
186 |
+
|
187 |
+
|
188 |
+
class DialogBotV1:
|
189 |
+
def __init__(
|
190 |
+
self,
|
191 |
+
model: AutoModelForSeq2SeqLM,
|
192 |
+
tokenizer: AutoTokenizer,
|
193 |
+
hyperparameters: H2PersonaChatHyperparametersV1,
|
194 |
+
history: List[str] = None,
|
195 |
+
persona: List[str] = None,
|
196 |
+
device: str = "cuda",
|
197 |
+
shuffle_persona: bool = True,
|
198 |
+
):
|
199 |
+
self.model = model
|
200 |
+
|
201 |
+
self.tokenizer = tokenizer
|
202 |
+
self.hyperparameters = hyperparameters
|
203 |
+
self.device = device
|
204 |
+
self.shuffle_persona = shuffle_persona
|
205 |
+
|
206 |
+
self.debug_status = hyperparameters.debug_status
|
207 |
+
|
208 |
+
if history is None:
|
209 |
+
self.history = []
|
210 |
+
self.history = history
|
211 |
+
|
212 |
+
if persona is None:
|
213 |
+
self.persona = []
|
214 |
+
self.persona = persona
|
215 |
+
|
216 |
+
def _get_sample(
|
217 |
+
self,
|
218 |
+
persona: List[str],
|
219 |
+
history: List[str],
|
220 |
+
) -> H2Seq2SeqInferenceSampleDictV1:
|
221 |
+
dataset_sample = PersonaChatDatasetSampleV1(
|
222 |
+
persona=persona,
|
223 |
+
history=history,
|
224 |
+
)
|
225 |
+
|
226 |
+
sample = H2Seq2SeqInferencePersonaSampleV1(
|
227 |
+
tokenizer=self.tokenizer,
|
228 |
+
hyperparameters=self.hyperparameters,
|
229 |
+
dataset_sample=dataset_sample,
|
230 |
+
)
|
231 |
+
sample = sample.get_sample()
|
232 |
+
print(self.tokenizer.decode(sample['input_ids']))
|
233 |
+
|
234 |
+
for key in sample.keys():
|
235 |
+
sample[key] = torch.tensor(sample[key]).unsqueeze(0).to(self.device)
|
236 |
+
|
237 |
+
return sample
|
238 |
+
|
239 |
+
def next_response(
|
240 |
+
self,
|
241 |
+
**generation_params,
|
242 |
+
) -> str:
|
243 |
+
"""
|
244 |
+
делает предсказание на основе текущей истории
|
245 |
+
и персоны
|
246 |
+
"""
|
247 |
+
|
248 |
+
sample = self._get_sample(
|
249 |
+
persona=self.persona,
|
250 |
+
history=self.history,
|
251 |
+
)
|
252 |
+
answer = self.generate_response(
|
253 |
+
sample,
|
254 |
+
**generation_params,
|
255 |
+
)
|
256 |
+
answer = self.tokenizer.batch_decode(
|
257 |
+
answer,
|
258 |
+
skip_special_tokens=True,
|
259 |
+
)
|
260 |
+
self.history.append(answer[0])
|
261 |
+
return answer[0]
|
262 |
+
|
263 |
+
def generate_response(
|
264 |
+
self,
|
265 |
+
sample: H2Seq2SeqInferenceSampleDictV1,
|
266 |
+
**generation_params,
|
267 |
+
):
|
268 |
+
"""
|
269 |
+
generation_params - https://huggingface.co/docs/transformers/v4.24.0/en/main_classes/text_generation
|
270 |
+
"""
|
271 |
+
with torch.no_grad():
|
272 |
+
return self.model.generate(
|
273 |
+
**sample,
|
274 |
+
**generation_params,
|
275 |
+
)
|
276 |
+
|
277 |
+
|
278 |
+
# facebook/mbart-large-50
|
279 |
+
PRETRAINED_MODEL_NAME_OR_PATH = "DeepPavlov/mbart-large-50-ru-persona-chat"
|
280 |
+
|
281 |
+
PAIR_DIALOG_HISTORY_LENGTH = 2
|
282 |
+
|
283 |
+
# CHAT_MAX_LENGTH for single sentence
|
284 |
+
CHAT_MAX_LENGTH = 25
|
285 |
+
# PERSONA_MAX_LENGTH for single sentence
|
286 |
+
PERSONA_MAX_LENGTH = 19
|
287 |
+
|
288 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
289 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(PRETRAINED_MODEL_NAME_OR_PATH)
|
290 |
+
model.to(device)
|
291 |
+
model.eval()
|
292 |
+
|
293 |
+
tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME_OR_PATH)
|
294 |
+
|
295 |
+
if torch.cuda.is_available():
|
296 |
+
model.half()
|
297 |
+
|
298 |
+
hyperparameters = H2PersonaChatHyperparametersV1(
|
299 |
+
chat_history_pair_length=PAIR_DIALOG_HISTORY_LENGTH,
|
300 |
+
persona_max_length=PERSONA_MAX_LENGTH,
|
301 |
+
chat_max_length=CHAT_MAX_LENGTH,
|
302 |
+
model_name=PRETRAINED_MODEL_NAME_OR_PATH,
|
303 |
+
)
|
304 |
+
|
305 |
+
|
306 |
+
persona = [
|
307 |
+
"Я люблю играть с милыми песиками",
|
308 |
+
"Я ненавижу лук и броколли"
|
309 |
+
]
|
310 |
+
|
311 |
+
history = [
|
312 |
+
"Привет. Ты любишь лук?"
|
313 |
+
]
|
314 |
+
|
315 |
+
persona_bot = DialogBotV1(
|
316 |
+
model=model,
|
317 |
+
tokenizer=tokenizer,
|
318 |
+
hyperparameters=hyperparameters,
|
319 |
+
history=history,
|
320 |
+
persona=persona,
|
321 |
+
device=device,
|
322 |
+
)
|
323 |
+
|
324 |
+
GENERATION_PARAMS = {
|
325 |
+
"max_new_tokens": 60,
|
326 |
+
"penalty_alpha": 0.15,
|
327 |
+
"top_k": 10
|
328 |
+
}
|
329 |
+
response = persona_bot.next_response(
|
330 |
+
**GENERATION_PARAMS,
|
331 |
+
)
|
332 |
+
|
333 |
+
print(response)
|
334 |
+
|
335 |
+
```
|
336 |
+
|
337 |
+
|
338 |
+
## Recommendations
|
339 |
+
|
340 |
+
# Training Details
|
341 |
+
|
342 |
+
## Training Data
|
343 |
+
|
344 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
345 |
+
- [Data Source | RU Persona Chat](https://toloka.ai/ru/datasets/#nlp)
|
346 |
+
|
347 |
+
[More Information Needed]
|
348 |
+
|
349 |
+
### Preprocessing
|
350 |
+
|
351 |
+
- Initial data was splitted by this script:
|
352 |
+
```python
|
353 |
+
def ru_persona_chat_dataset_tranformer_v1(
|
354 |
+
initial_dataset_path: str,
|
355 |
+
output_folder: str,
|
356 |
+
) -> None:
|
357 |
+
"""
|
358 |
+
example
|
359 |
+
ru_persona_chat_dataset_tranformer_v1(
|
360 |
+
initial_dataset_path="./datasets/ru_persona_chat/dialogues.tsv",
|
361 |
+
output_folder="./datasets/ru_persona_chat",
|
362 |
+
)
|
363 |
+
"""
|
364 |
+
assert initial_dataset_path is not None, "initial_dataset_path is None"
|
365 |
+
assert output_folder is not None, "output_folder is None"
|
366 |
+
|
367 |
+
dataset = pd.read_csv(initial_dataset_path, sep="\t")
|
368 |
+
split_ratio = int(len(dataset) * 0.95)
|
369 |
+
train_dataset = dataset[:split_ratio]
|
370 |
+
valid_dataset = dataset[split_ratio:]
|
371 |
+
|
372 |
+
print(f"Dataset lengths: train {len(train_dataset)}, valid {len(valid_dataset)}")
|
373 |
+
# save csv files
|
374 |
+
train_dataset.to_csv(output_folder + "/train.csv", index=False)
|
375 |
+
valid_dataset.to_csv(output_folder + "/valid.csv", index=False)
|
376 |
+
print("Datasets saved.")
|
377 |
+
```
|
378 |
+
|
379 |
+
# Evaluation
|
380 |
+
|
381 |
+
### Metrics
|
382 |
+
|
383 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
384 |
+
- BLUEL
|
385 |
+
- CharF
|
386 |
+
- RougeL
|