File size: 1,733 Bytes
92ed04e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: mit
base_model: microsoft/deberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: FakeNews-deberta-large-stable
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# FakeNews-deberta-large-stable

This model is a fine-tuned version of [microsoft/deberta-large](https://huggingface.co/microsoft/deberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1048
- Accuracy: 0.9771

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3373        | 1.0   | 802  | 0.1635          | 0.9682   |
| 0.0951        | 2.0   | 1605 | 0.1048          | 0.9771   |
| 0.0419        | 3.0   | 2407 | 0.1141          | 0.9785   |
| 0.0114        | 4.0   | 3210 | 0.1555          | 0.9818   |
| 0.0026        | 5.0   | 4010 | 0.1680          | 0.9808   |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1