File size: 2,043 Bytes
b8d8584 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
defaults:
- _self_
- env: lr
- agent: lr
- world_model_env: default
hydra:
job:
chdir: True
wandb:
mode: disabled
project: null
entity: null
name: null
group: null
tags: null
notes: null
initialization:
path_to_ckpt: null
load_denoiser: True
load_rew_end_model: True
load_actor_critic: True
common:
devices: all # int, list of int, cpu, or all
seed: null
resume: False # do not modify, set by scripts/resume.sh only.
checkpointing:
save_agent_every: 5
num_to_keep: 11 # number of checkpoints to keep, use null to disable
collection:
train:
num_envs: 1
epsilon: 0.01
num_steps_total: 100000
first_epoch:
min: 5000
max: 10000 # null: no maximum
threshold_rew: 10
steps_per_epoch: 100
test:
num_envs: 1
num_episodes: 4
epsilon: 0.0
num_final_episodes: 100
static_dataset:
path: ${env.path_data_low_res}
ignore_sample_weights: True
training:
should: True
num_final_epochs: 1500
cache_in_ram: False
num_workers_data_loaders: 4
model_free: False # if True, turn off world_model training and RL in imagination
compile_wm: False
evaluation:
should: True
every: 20
denoiser:
training:
num_autoregressive_steps: 4
start_after_epochs: 0
steps_first_epoch: 100
steps_per_epoch: 100
sample_weights: null
batch_size: 14
grad_acc_steps: 1
lr_warmup_steps: 100
max_grad_norm: 10.0
optimizer:
lr: 1e-4
weight_decay: 1e-2
eps: 1e-8
sigma_distribution: # log normal distribution for sigma during training
_target_: models.diffusion.SigmaDistributionConfig
loc: -1.2
scale: 1.2
sigma_min: 2e-3
sigma_max: 20
upsampler:
training:
num_autoregressive_steps: 1
start_after_epochs: 0
steps_first_epoch: 400
steps_per_epoch: 400
sample_weights: null
batch_size: 14
grad_acc_steps: 1
lr_warmup_steps: 100
max_grad_norm: 10.0
optimizer: ${denoiser.optimizer}
sigma_distribution: ${denoiser.sigma_distribution}
|