defaults: - _self_ - env: lr - agent: lr - world_model_env: default hydra: job: chdir: True wandb: mode: disabled project: null entity: null name: null group: null tags: null notes: null initialization: path_to_ckpt: null load_denoiser: True load_rew_end_model: True load_actor_critic: True common: devices: all # int, list of int, cpu, or all seed: null resume: False # do not modify, set by scripts/resume.sh only. checkpointing: save_agent_every: 5 num_to_keep: 11 # number of checkpoints to keep, use null to disable collection: train: num_envs: 1 epsilon: 0.01 num_steps_total: 100000 first_epoch: min: 5000 max: 10000 # null: no maximum threshold_rew: 10 steps_per_epoch: 100 test: num_envs: 1 num_episodes: 4 epsilon: 0.0 num_final_episodes: 100 static_dataset: path: ${env.path_data_low_res} ignore_sample_weights: True training: should: True num_final_epochs: 1500 cache_in_ram: False num_workers_data_loaders: 4 model_free: False # if True, turn off world_model training and RL in imagination compile_wm: False evaluation: should: True every: 20 denoiser: training: num_autoregressive_steps: 4 start_after_epochs: 0 steps_first_epoch: 100 steps_per_epoch: 100 sample_weights: null batch_size: 14 grad_acc_steps: 1 lr_warmup_steps: 100 max_grad_norm: 10.0 optimizer: lr: 1e-4 weight_decay: 1e-2 eps: 1e-8 sigma_distribution: # log normal distribution for sigma during training _target_: models.diffusion.SigmaDistributionConfig loc: -1.2 scale: 1.2 sigma_min: 2e-3 sigma_max: 20 upsampler: training: num_autoregressive_steps: 1 start_after_epochs: 0 steps_first_epoch: 400 steps_per_epoch: 400 sample_weights: null batch_size: 14 grad_acc_steps: 1 lr_warmup_steps: 100 max_grad_norm: 10.0 optimizer: ${denoiser.optimizer} sigma_distribution: ${denoiser.sigma_distribution}