File size: 1,959 Bytes
659b86f 92b31fa 659b86f 92b31fa 659b86f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: apache-2.0
base_model: DewiBrynJones/wav2vec2-xlsr-53-ft-btb-ccv-cy
tags:
- automatic-speech-recognition
- DewiBrynJones/banc-trawsgrifiadau-bangor-clean
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-btb-ccv-ft-btb-cy
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-btb-ccv-ft-btb-cy
This model is a fine-tuned version of [DewiBrynJones/wav2vec2-xlsr-53-ft-btb-ccv-cy](https://huggingface.co/DewiBrynJones/wav2vec2-xlsr-53-ft-btb-ccv-cy) on the DEWIBRYNJONES/BANC-TRAWSGRIFIADAU-BANGOR-CLEAN - DEFAULT dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6272
- Wer: 0.3870
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 120
- training_steps: 1200
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| No log | 0.4556 | 200 | 0.6623 | 0.4950 |
| No log | 0.9112 | 400 | 0.5531 | 0.4115 |
| 1.5958 | 1.3667 | 600 | 0.5107 | 0.3868 |
| 1.5958 | 1.8223 | 800 | 0.5462 | 0.3999 |
| 0.6374 | 2.2779 | 1000 | 0.5843 | 0.3879 |
| 0.6374 | 2.7335 | 1200 | 0.6272 | 0.3870 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|