File size: 2,651 Bytes
40370e3 38874e9 40370e3 38874e9 40370e3 8982e3e 40370e3 150d894 38874e9 40370e3 150d894 38874e9 40370e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-xlsr-53-ft-btb-ccv-cy
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xlsr-53-ft-btb-ccv-cy
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4200
- Wer: 0.3227
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| No log | 0.1548 | 100 | 3.5623 | 1.0 |
| No log | 0.3096 | 200 | 3.2967 | 1.0 |
| No log | 0.4644 | 300 | 2.6484 | 1.0000 |
| No log | 0.6192 | 400 | 1.0602 | 0.7315 |
| 3.6398 | 0.7740 | 500 | 0.8942 | 0.6696 |
| 3.6398 | 0.9288 | 600 | 0.7116 | 0.5361 |
| 3.6398 | 1.0836 | 700 | 0.6648 | 0.5101 |
| 3.6398 | 1.2384 | 800 | 0.5869 | 0.4528 |
| 3.6398 | 1.3932 | 900 | 0.5698 | 0.4359 |
| 0.5976 | 1.5480 | 1000 | 0.5408 | 0.4112 |
| 0.5976 | 1.7028 | 1100 | 0.5229 | 0.4196 |
| 0.5976 | 1.8576 | 1200 | 0.5055 | 0.3955 |
| 0.5976 | 2.0124 | 1300 | 0.4808 | 0.3709 |
| 0.5976 | 2.1672 | 1400 | 0.4667 | 0.3580 |
| 0.443 | 2.3220 | 1500 | 0.4573 | 0.3582 |
| 0.443 | 2.4768 | 1600 | 0.4475 | 0.3452 |
| 0.443 | 2.6316 | 1700 | 0.4369 | 0.3478 |
| 0.443 | 2.7864 | 1800 | 0.4227 | 0.3298 |
| 0.443 | 2.9412 | 1900 | 0.4169 | 0.3271 |
| 0.3475 | 3.0960 | 2000 | 0.4200 | 0.3227 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|