File size: 3,227 Bytes
40370e3
 
 
 
52a97a4
 
40370e3
 
 
 
 
 
 
 
 
 
 
 
 
52a97a4
40370e3
88f955e
 
40370e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88f955e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40370e3
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- automatic-speech-recognition
- DewiBrynJones/banc-trawsgrifiadau-bangor-clean-with-ccv
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-xlsr-53-ft-btb-ccv-cy
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xlsr-53-ft-btb-ccv-cy

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the DEWIBRYNJONES/BANC-TRAWSGRIFIADAU-BANGOR-CLEAN-WITH-CCV - DEFAULT dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4349
- Wer: 0.3391

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2600
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| No log        | 0.0774 | 100  | 3.5346          | 1.0    |
| No log        | 0.1549 | 200  | 2.9829          | 1.0    |
| No log        | 0.2323 | 300  | 2.7705          | 1.0    |
| No log        | 0.3097 | 400  | 1.3696          | 0.8535 |
| 3.7305        | 0.3871 | 500  | 1.0936          | 0.7465 |
| 3.7305        | 0.4646 | 600  | 0.8457          | 0.6413 |
| 3.7305        | 0.5420 | 700  | 0.7860          | 0.5836 |
| 3.7305        | 0.6194 | 800  | 0.7366          | 0.5637 |
| 3.7305        | 0.6969 | 900  | 0.7319          | 0.5494 |
| 0.7504        | 0.7743 | 1000 | 0.6439          | 0.5104 |
| 0.7504        | 0.8517 | 1100 | 0.6214          | 0.4759 |
| 0.7504        | 0.9292 | 1200 | 0.5957          | 0.4628 |
| 0.7504        | 1.0066 | 1300 | 0.5717          | 0.4353 |
| 0.7504        | 1.0840 | 1400 | 0.5500          | 0.4192 |
| 0.5571        | 1.1614 | 1500 | 0.5342          | 0.4073 |
| 0.5571        | 1.2389 | 1600 | 0.5207          | 0.4024 |
| 0.5571        | 1.3163 | 1700 | 0.5142          | 0.3969 |
| 0.5571        | 1.3937 | 1800 | 0.5083          | 0.3958 |
| 0.5571        | 1.4712 | 1900 | 0.4886          | 0.3825 |
| 0.4603        | 1.5486 | 2000 | 0.4733          | 0.3743 |
| 0.4603        | 1.6260 | 2100 | 0.4616          | 0.3619 |
| 0.4603        | 1.7034 | 2200 | 0.4536          | 0.3627 |
| 0.4603        | 1.7809 | 2300 | 0.4488          | 0.3487 |
| 0.4603        | 1.8583 | 2400 | 0.4429          | 0.3481 |
| 0.4163        | 1.9357 | 2500 | 0.4377          | 0.3419 |
| 0.4163        | 2.0132 | 2600 | 0.4349          | 0.3391 |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1