File size: 2,311 Bytes
40370e3
edfd598
40370e3
 
3077817
 
40370e3
 
 
 
 
 
 
 
 
 
 
 
 
3077817
40370e3
411e103
 
40370e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d02b06f
edfd598
40370e3
 
 
943fd9c
 
40370e3
 
 
 
943fd9c
 
411e103
 
 
 
 
 
 
 
 
 
 
 
40370e3
 
 
 
66985d8
 
 
40370e3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- automatic-speech-recognition
- DewiBrynJones/banc-trawsgrifiadau-bangor-clean-with-ccv
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-xlsr-53-ft-btb-ccv-cy
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xlsr-53-ft-btb-ccv-cy

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the DEWIBRYNJONES/BANC-TRAWSGRIFIADAU-BANGOR-CLEAN-WITH-CCV - DEFAULT dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5865
- Wer: 0.4452

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 600
- training_steps: 6000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 4.7051        | 0.0321 | 500  | 1.6562          | 0.9355 |
| 1.0362        | 0.0641 | 1000 | 1.1840          | 0.7978 |
| 0.811         | 0.0962 | 1500 | 1.0081          | 0.7175 |
| 0.6903        | 0.1283 | 2000 | 0.8935          | 0.6401 |
| 0.6238        | 0.1603 | 2500 | 0.8060          | 0.5849 |
| 0.5649        | 0.1924 | 3000 | 0.7770          | 0.5589 |
| 0.5309        | 0.2244 | 3500 | 0.7264          | 0.5327 |
| 0.4892        | 0.2565 | 4000 | 0.6865          | 0.5106 |
| 0.4521        | 0.2886 | 4500 | 0.6478          | 0.4861 |
| 0.4309        | 0.3206 | 5000 | 0.6222          | 0.4763 |
| 0.4055        | 0.3527 | 5500 | 0.5988          | 0.4526 |
| 0.3896        | 0.3848 | 6000 | 0.5865          | 0.4452 |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1