File size: 3,408 Bytes
40370e3 ce354d9 40370e3 ce354d9 40370e3 e2ae8fd 40370e3 e2ae8fd 40370e3 150d894 e2ae8fd 40370e3 150d894 e2ae8fd 40370e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- automatic-speech-recognition
- DewiBrynJones/banc-trawsgrifiadau-bangor-clean-with-ccv
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-xlsr-53-ft-btb-ccv-cy
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xlsr-53-ft-btb-ccv-cy
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the DEWIBRYNJONES/BANC-TRAWSGRIFIADAU-BANGOR-CLEAN-WITH-CCV - DEFAULT dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5355
- Wer: 0.4186
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| No log | 0.0194 | 100 | 3.5494 | 1.0 |
| No log | 0.0387 | 200 | 3.0426 | 1.0 |
| No log | 0.0581 | 300 | 2.8965 | 1.0 |
| No log | 0.0774 | 400 | 1.8263 | 0.9829 |
| 3.9715 | 0.0968 | 500 | 1.3860 | 0.8749 |
| 3.9715 | 0.1161 | 600 | 1.3084 | 0.8153 |
| 3.9715 | 0.1355 | 700 | 1.0550 | 0.7337 |
| 3.9715 | 0.1549 | 800 | 1.0012 | 0.7190 |
| 3.9715 | 0.1742 | 900 | 0.9137 | 0.6752 |
| 1.0155 | 0.1936 | 1000 | 0.8486 | 0.6469 |
| 1.0155 | 0.2129 | 1100 | 0.8535 | 0.6112 |
| 1.0155 | 0.2323 | 1200 | 0.8350 | 0.6193 |
| 1.0155 | 0.2516 | 1300 | 0.7681 | 0.5670 |
| 1.0155 | 0.2710 | 1400 | 0.7377 | 0.5559 |
| 0.7987 | 0.2904 | 1500 | 0.7130 | 0.5437 |
| 0.7987 | 0.3097 | 1600 | 0.7040 | 0.5452 |
| 0.7987 | 0.3291 | 1700 | 0.6729 | 0.5051 |
| 0.7987 | 0.3484 | 1800 | 0.6646 | 0.5113 |
| 0.7987 | 0.3678 | 1900 | 0.6531 | 0.4969 |
| 0.6851 | 0.3871 | 2000 | 0.6414 | 0.5038 |
| 0.6851 | 0.4065 | 2100 | 0.6109 | 0.4677 |
| 0.6851 | 0.4259 | 2200 | 0.6035 | 0.4692 |
| 0.6851 | 0.4452 | 2300 | 0.5802 | 0.4590 |
| 0.6851 | 0.4646 | 2400 | 0.5720 | 0.4455 |
| 0.5979 | 0.4839 | 2500 | 0.5695 | 0.4426 |
| 0.5979 | 0.5033 | 2600 | 0.5557 | 0.4351 |
| 0.5979 | 0.5226 | 2700 | 0.5499 | 0.4270 |
| 0.5979 | 0.5420 | 2800 | 0.5451 | 0.4258 |
| 0.5979 | 0.5614 | 2900 | 0.5383 | 0.4217 |
| 0.5753 | 0.5807 | 3000 | 0.5355 | 0.4186 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|