File size: 3,258 Bytes
40370e3 ff51815 40370e3 66d8231 ff51815 40370e3 ff51815 40370e3 150d894 82b06da 40370e3 dd52fa9 ff51815 40370e3 e7d7787 21a680a 40370e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-xlsr-53-ft-btb-ccv-cy
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xlsr-53-ft-btb-ccv-cy
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: inf
- Wer: 0.5238
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 6000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| No log | 0.1544 | 200 | inf | 1.0 |
| No log | 0.3089 | 400 | inf | 0.8661 |
| 3.7305 | 0.4633 | 600 | inf | 0.7040 |
| 3.7305 | 0.6178 | 800 | inf | 0.5506 |
| 0.8464 | 0.7722 | 1000 | inf | 0.5168 |
| 0.8464 | 0.9266 | 1200 | inf | 0.4825 |
| 0.8464 | 1.0811 | 1400 | inf | 0.4601 |
| 0.6629 | 1.2355 | 1600 | inf | 0.4445 |
| 0.6629 | 1.3900 | 1800 | inf | 0.4143 |
| 0.5655 | 1.5444 | 2000 | inf | 0.4170 |
| 0.5655 | 1.6988 | 2200 | inf | 0.4047 |
| 0.5655 | 1.8533 | 2400 | inf | 0.3966 |
| 0.5524 | 2.0077 | 2600 | inf | 0.3779 |
| 0.5524 | 2.1622 | 2800 | inf | 0.3737 |
| 0.4773 | 2.3166 | 3000 | inf | 0.3698 |
| 0.4773 | 2.4710 | 3200 | inf | 0.3724 |
| 0.4773 | 2.6255 | 3400 | inf | 0.3584 |
| 0.4694 | 2.7799 | 3600 | inf | 0.3821 |
| 0.4694 | 2.9344 | 3800 | inf | 0.4730 |
| 0.6537 | 3.0888 | 4000 | inf | 0.4754 |
| 0.6537 | 3.2432 | 4200 | inf | 0.5899 |
| 0.6537 | 3.3977 | 4400 | inf | 0.5958 |
| 0.8238 | 3.5521 | 4600 | inf | 0.6336 |
| 0.8238 | 3.7066 | 4800 | inf | 0.6026 |
| 0.8682 | 3.8610 | 5000 | inf | 0.5671 |
| 0.8682 | 4.0154 | 5200 | inf | 0.5378 |
| 0.8682 | 4.1699 | 5400 | inf | 0.5374 |
| 0.855 | 4.3243 | 5600 | inf | 0.5328 |
| 0.855 | 4.4788 | 5800 | inf | 0.5225 |
| 0.9644 | 4.6332 | 6000 | inf | 0.5238 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|