DewiBrynJones
commited on
Commit
•
9569f1c
1
Parent(s):
2d4b602
Model save
Browse files
README.md
CHANGED
@@ -2,8 +2,6 @@
|
|
2 |
license: apache-2.0
|
3 |
base_model: facebook/wav2vec2-large-xlsr-53
|
4 |
tags:
|
5 |
-
- automatic-speech-recognition
|
6 |
-
- DewiBrynJones/banc-trawsgrifiadau-bangor-clean-with-ccv
|
7 |
- generated_from_trainer
|
8 |
metrics:
|
9 |
- wer
|
@@ -17,10 +15,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
# wav2vec2-xlsr-53-ft-btb-ccv-cy
|
19 |
|
20 |
-
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.
|
23 |
-
- Wer: 0.
|
24 |
|
25 |
## Model description
|
26 |
|
@@ -46,43 +44,113 @@ The following hyperparameters were used during training:
|
|
46 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
- lr_scheduler_type: linear
|
48 |
- lr_scheduler_warmup_steps: 500
|
49 |
-
- training_steps:
|
50 |
- mixed_precision_training: Native AMP
|
51 |
|
52 |
### Training results
|
53 |
|
54 |
-
| Training Loss | Epoch | Step
|
55 |
-
|
56 |
-
| No log | 0.0194 | 100
|
57 |
-
| No log | 0.0387 | 200
|
58 |
-
| No log | 0.0581 | 300
|
59 |
-
| No log | 0.0774 | 400
|
60 |
-
| 3.
|
61 |
-
| 3.
|
62 |
-
| 3.
|
63 |
-
| 3.
|
64 |
-
| 3.
|
65 |
-
| 1.
|
66 |
-
| 1.
|
67 |
-
| 1.
|
68 |
-
| 1.
|
69 |
-
| 1.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
|
88 |
### Framework versions
|
|
|
2 |
license: apache-2.0
|
3 |
base_model: facebook/wav2vec2-large-xlsr-53
|
4 |
tags:
|
|
|
|
|
5 |
- generated_from_trainer
|
6 |
metrics:
|
7 |
- wer
|
|
|
15 |
|
16 |
# wav2vec2-xlsr-53-ft-btb-ccv-cy
|
17 |
|
18 |
+
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.4061
|
21 |
+
- Wer: 0.3193
|
22 |
|
23 |
## Model description
|
24 |
|
|
|
44 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
- lr_scheduler_type: linear
|
46 |
- lr_scheduler_warmup_steps: 500
|
47 |
+
- training_steps: 10000
|
48 |
- mixed_precision_training: Native AMP
|
49 |
|
50 |
### Training results
|
51 |
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
53 |
+
|:-------------:|:------:|:-----:|:---------------:|:------:|
|
54 |
+
| No log | 0.0194 | 100 | 3.5565 | 1.0 |
|
55 |
+
| No log | 0.0387 | 200 | 3.0302 | 1.0 |
|
56 |
+
| No log | 0.0581 | 300 | 2.9461 | 1.0 |
|
57 |
+
| No log | 0.0774 | 400 | 1.8143 | 0.9407 |
|
58 |
+
| 3.9521 | 0.0968 | 500 | 1.4196 | 0.8693 |
|
59 |
+
| 3.9521 | 0.1161 | 600 | 1.1669 | 0.8055 |
|
60 |
+
| 3.9521 | 0.1355 | 700 | 1.0757 | 0.7596 |
|
61 |
+
| 3.9521 | 0.1549 | 800 | 0.9945 | 0.7224 |
|
62 |
+
| 3.9521 | 0.1742 | 900 | 0.9381 | 0.6871 |
|
63 |
+
| 1.0266 | 0.1936 | 1000 | 0.8978 | 0.6615 |
|
64 |
+
| 1.0266 | 0.2129 | 1100 | 0.8771 | 0.6450 |
|
65 |
+
| 1.0266 | 0.2323 | 1200 | 0.8516 | 0.6404 |
|
66 |
+
| 1.0266 | 0.2516 | 1300 | 0.8274 | 0.6138 |
|
67 |
+
| 1.0266 | 0.2710 | 1400 | 0.7993 | 0.5970 |
|
68 |
+
| 0.8454 | 0.2904 | 1500 | 0.7769 | 0.5888 |
|
69 |
+
| 0.8454 | 0.3097 | 1600 | 0.7664 | 0.5998 |
|
70 |
+
| 0.8454 | 0.3291 | 1700 | 0.7401 | 0.5592 |
|
71 |
+
| 0.8454 | 0.3484 | 1800 | 0.7465 | 0.5650 |
|
72 |
+
| 0.8454 | 0.3678 | 1900 | 0.7253 | 0.5791 |
|
73 |
+
| 0.7537 | 0.3871 | 2000 | 0.7039 | 0.5344 |
|
74 |
+
| 0.7537 | 0.4065 | 2100 | 0.6932 | 0.5168 |
|
75 |
+
| 0.7537 | 0.4259 | 2200 | 0.6969 | 0.5364 |
|
76 |
+
| 0.7537 | 0.4452 | 2300 | 0.6781 | 0.5174 |
|
77 |
+
| 0.7537 | 0.4646 | 2400 | 0.6761 | 0.5050 |
|
78 |
+
| 0.681 | 0.4839 | 2500 | 0.6721 | 0.5287 |
|
79 |
+
| 0.681 | 0.5033 | 2600 | 0.6598 | 0.5195 |
|
80 |
+
| 0.681 | 0.5226 | 2700 | 0.6555 | 0.4976 |
|
81 |
+
| 0.681 | 0.5420 | 2800 | 0.6535 | 0.4994 |
|
82 |
+
| 0.681 | 0.5614 | 2900 | 0.6259 | 0.4819 |
|
83 |
+
| 0.6737 | 0.5807 | 3000 | 0.6299 | 0.4802 |
|
84 |
+
| 0.6737 | 0.6001 | 3100 | 0.6379 | 0.4893 |
|
85 |
+
| 0.6737 | 0.6194 | 3200 | 0.6226 | 0.4806 |
|
86 |
+
| 0.6737 | 0.6388 | 3300 | 0.6089 | 0.4627 |
|
87 |
+
| 0.6737 | 0.6581 | 3400 | 0.6029 | 0.4735 |
|
88 |
+
| 0.6419 | 0.6775 | 3500 | 0.5871 | 0.4592 |
|
89 |
+
| 0.6419 | 0.6969 | 3600 | 0.6001 | 0.4611 |
|
90 |
+
| 0.6419 | 0.7162 | 3700 | 0.5849 | 0.4473 |
|
91 |
+
| 0.6419 | 0.7356 | 3800 | 0.5924 | 0.4638 |
|
92 |
+
| 0.6419 | 0.7549 | 3900 | 0.5768 | 0.4585 |
|
93 |
+
| 0.6183 | 0.7743 | 4000 | 0.5673 | 0.4453 |
|
94 |
+
| 0.6183 | 0.7937 | 4100 | 0.5575 | 0.4452 |
|
95 |
+
| 0.6183 | 0.8130 | 4200 | 0.5632 | 0.4475 |
|
96 |
+
| 0.6183 | 0.8324 | 4300 | 0.5499 | 0.4401 |
|
97 |
+
| 0.6183 | 0.8517 | 4400 | 0.5663 | 0.4310 |
|
98 |
+
| 0.5877 | 0.8711 | 4500 | 0.5585 | 0.4317 |
|
99 |
+
| 0.5877 | 0.8904 | 4600 | 0.5464 | 0.4200 |
|
100 |
+
| 0.5877 | 0.9098 | 4700 | 0.5381 | 0.4192 |
|
101 |
+
| 0.5877 | 0.9292 | 4800 | 0.5454 | 0.4202 |
|
102 |
+
| 0.5877 | 0.9485 | 4900 | 0.5238 | 0.4124 |
|
103 |
+
| 0.5621 | 0.9679 | 5000 | 0.5304 | 0.4135 |
|
104 |
+
| 0.5621 | 0.9872 | 5100 | 0.5163 | 0.4061 |
|
105 |
+
| 0.5621 | 1.0066 | 5200 | 0.5160 | 0.3993 |
|
106 |
+
| 0.5621 | 1.0259 | 5300 | 0.5089 | 0.3899 |
|
107 |
+
| 0.5621 | 1.0453 | 5400 | 0.5111 | 0.3986 |
|
108 |
+
| 0.4882 | 1.0647 | 5500 | 0.5010 | 0.3857 |
|
109 |
+
| 0.4882 | 1.0840 | 5600 | 0.4941 | 0.3859 |
|
110 |
+
| 0.4882 | 1.1034 | 5700 | 0.4940 | 0.3813 |
|
111 |
+
| 0.4882 | 1.1227 | 5800 | 0.4914 | 0.3782 |
|
112 |
+
| 0.4882 | 1.1421 | 5900 | 0.4875 | 0.3745 |
|
113 |
+
| 0.4569 | 1.1614 | 6000 | 0.4842 | 0.3807 |
|
114 |
+
| 0.4569 | 1.1808 | 6100 | 0.4861 | 0.3737 |
|
115 |
+
| 0.4569 | 1.2002 | 6200 | 0.4814 | 0.3761 |
|
116 |
+
| 0.4569 | 1.2195 | 6300 | 0.4781 | 0.3741 |
|
117 |
+
| 0.4569 | 1.2389 | 6400 | 0.4771 | 0.3682 |
|
118 |
+
| 0.4416 | 1.2582 | 6500 | 0.4710 | 0.3734 |
|
119 |
+
| 0.4416 | 1.2776 | 6600 | 0.4721 | 0.3660 |
|
120 |
+
| 0.4416 | 1.2969 | 6700 | 0.4679 | 0.3639 |
|
121 |
+
| 0.4416 | 1.3163 | 6800 | 0.4623 | 0.3665 |
|
122 |
+
| 0.4416 | 1.3357 | 6900 | 0.4611 | 0.3602 |
|
123 |
+
| 0.4324 | 1.3550 | 7000 | 0.4689 | 0.3609 |
|
124 |
+
| 0.4324 | 1.3744 | 7100 | 0.4573 | 0.3603 |
|
125 |
+
| 0.4324 | 1.3937 | 7200 | 0.4575 | 0.3546 |
|
126 |
+
| 0.4324 | 1.4131 | 7300 | 0.4556 | 0.3584 |
|
127 |
+
| 0.4324 | 1.4324 | 7400 | 0.4496 | 0.3507 |
|
128 |
+
| 0.4255 | 1.4518 | 7500 | 0.4461 | 0.3467 |
|
129 |
+
| 0.4255 | 1.4712 | 7600 | 0.4434 | 0.3462 |
|
130 |
+
| 0.4255 | 1.4905 | 7700 | 0.4436 | 0.3516 |
|
131 |
+
| 0.4255 | 1.5099 | 7800 | 0.4406 | 0.3458 |
|
132 |
+
| 0.4255 | 1.5292 | 7900 | 0.4387 | 0.3439 |
|
133 |
+
| 0.4094 | 1.5486 | 8000 | 0.4325 | 0.3410 |
|
134 |
+
| 0.4094 | 1.5679 | 8100 | 0.4360 | 0.3419 |
|
135 |
+
| 0.4094 | 1.5873 | 8200 | 0.4286 | 0.3377 |
|
136 |
+
| 0.4094 | 1.6067 | 8300 | 0.4301 | 0.3336 |
|
137 |
+
| 0.4094 | 1.6260 | 8400 | 0.4297 | 0.3323 |
|
138 |
+
| 0.4018 | 1.6454 | 8500 | 0.4270 | 0.3339 |
|
139 |
+
| 0.4018 | 1.6647 | 8600 | 0.4267 | 0.3320 |
|
140 |
+
| 0.4018 | 1.6841 | 8700 | 0.4224 | 0.3328 |
|
141 |
+
| 0.4018 | 1.7034 | 8800 | 0.4207 | 0.3298 |
|
142 |
+
| 0.4018 | 1.7228 | 8900 | 0.4197 | 0.3298 |
|
143 |
+
| 0.3899 | 1.7422 | 9000 | 0.4184 | 0.3258 |
|
144 |
+
| 0.3899 | 1.7615 | 9100 | 0.4165 | 0.3262 |
|
145 |
+
| 0.3899 | 1.7809 | 9200 | 0.4118 | 0.3229 |
|
146 |
+
| 0.3899 | 1.8002 | 9300 | 0.4134 | 0.3232 |
|
147 |
+
| 0.3899 | 1.8196 | 9400 | 0.4127 | 0.3209 |
|
148 |
+
| 0.3665 | 1.8389 | 9500 | 0.4108 | 0.3211 |
|
149 |
+
| 0.3665 | 1.8583 | 9600 | 0.4090 | 0.3199 |
|
150 |
+
| 0.3665 | 1.8777 | 9700 | 0.4076 | 0.3209 |
|
151 |
+
| 0.3665 | 1.8970 | 9800 | 0.4065 | 0.3198 |
|
152 |
+
| 0.3665 | 1.9164 | 9900 | 0.4062 | 0.3192 |
|
153 |
+
| 0.3698 | 1.9357 | 10000 | 0.4061 | 0.3193 |
|
154 |
|
155 |
|
156 |
### Framework versions
|