--- license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53 tags: - automatic-speech-recognition - DewiBrynJones/banc-trawsgrifiadau-bangor-clean-with-ccv - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xlsr-53-ft-btb-ccv-cy results: [] --- # wav2vec2-xlsr-53-ft-btb-ccv-cy This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the DEWIBRYNJONES/BANC-TRAWSGRIFIADAU-BANGOR-CLEAN-WITH-CCV - DEFAULT dataset. It achieves the following results on the evaluation set: - Loss: 0.4290 - Wer: 0.3378 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2600 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | No log | 0.0774 | 100 | 3.5325 | 1.0 | | No log | 0.1549 | 200 | 2.9652 | 1.0 | | No log | 0.2323 | 300 | 2.8521 | 1.0 | | No log | 0.3097 | 400 | 1.2473 | 0.8265 | | 3.7403 | 0.3871 | 500 | 0.9730 | 0.7234 | | 3.7403 | 0.4646 | 600 | 0.8328 | 0.6178 | | 3.7403 | 0.5420 | 700 | 0.7426 | 0.5505 | | 3.7403 | 0.6194 | 800 | 0.7127 | 0.5540 | | 3.7403 | 0.6969 | 900 | 0.6692 | 0.5080 | | 0.7271 | 0.7743 | 1000 | 0.6376 | 0.5256 | | 0.7271 | 0.8517 | 1100 | 0.6119 | 0.4706 | | 0.7271 | 0.9292 | 1200 | 0.5987 | 0.4651 | | 0.7271 | 1.0066 | 1300 | 0.5614 | 0.4267 | | 0.7271 | 1.0840 | 1400 | 0.5463 | 0.4229 | | 0.5511 | 1.1614 | 1500 | 0.5232 | 0.4079 | | 0.5511 | 1.2389 | 1600 | 0.5185 | 0.4029 | | 0.5511 | 1.3163 | 1700 | 0.5090 | 0.4042 | | 0.5511 | 1.3937 | 1800 | 0.4785 | 0.3851 | | 0.5511 | 1.4712 | 1900 | 0.4775 | 0.3803 | | 0.4529 | 1.5486 | 2000 | 0.4677 | 0.3722 | | 0.4529 | 1.6260 | 2100 | 0.4574 | 0.3544 | | 0.4529 | 1.7034 | 2200 | 0.4473 | 0.3562 | | 0.4529 | 1.7809 | 2300 | 0.4437 | 0.3470 | | 0.4529 | 1.8583 | 2400 | 0.4353 | 0.3450 | | 0.4149 | 1.9357 | 2500 | 0.4300 | 0.3401 | | 0.4149 | 2.0132 | 2600 | 0.4290 | 0.3378 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1