--- license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xlsr-53-ft-btb-ccv-cy results: [] --- # wav2vec2-xlsr-53-ft-btb-ccv-cy This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6956 - Wer: 0.7702 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | No log | 0.1548 | 100 | 3.5587 | 1.0 | | No log | 0.3096 | 200 | 3.2506 | 1.0 | | No log | 0.4644 | 300 | 2.7740 | 1.0000 | | No log | 0.6192 | 400 | 1.1196 | 0.7807 | | 3.6484 | 0.7740 | 500 | 0.9134 | 0.6539 | | 3.6484 | 0.9288 | 600 | 0.7675 | 0.5923 | | 3.6484 | 1.0836 | 700 | 0.7208 | 0.5290 | | 3.6484 | 1.2384 | 800 | 0.6209 | 0.4745 | | 3.6484 | 1.3932 | 900 | 0.6220 | 0.4788 | | 0.6286 | 1.5480 | 1000 | 0.5739 | 0.4588 | | 0.6286 | 1.7028 | 1100 | 0.5642 | 0.4262 | | 0.6286 | 1.8576 | 1200 | 0.5512 | 0.4208 | | 0.6286 | 2.0124 | 1300 | 0.5275 | 0.3865 | | 0.6286 | 2.1672 | 1400 | 0.4955 | 0.3755 | | 0.4816 | 2.3220 | 1500 | 0.4909 | 0.3733 | | 0.4816 | 2.4768 | 1600 | 0.4983 | 0.3728 | | 0.4816 | 2.6316 | 1700 | 0.4891 | 0.3655 | | 0.4816 | 2.7864 | 1800 | 0.4796 | 0.3571 | | 0.4816 | 2.9412 | 1900 | 0.4643 | 0.3592 | | 0.4017 | 3.0960 | 2000 | 0.5085 | 0.3698 | | 0.4017 | 3.2508 | 2100 | 0.6755 | 0.4530 | | 0.4017 | 3.4056 | 2200 | 0.7100 | 0.5108 | | 0.4017 | 3.5604 | 2300 | 0.8311 | 0.5643 | | 0.4017 | 3.7152 | 2400 | 0.7032 | 0.5029 | | 0.6839 | 3.8700 | 2500 | 0.7071 | 0.5007 | | 0.6839 | 4.0248 | 2600 | 0.8224 | 0.5069 | | 0.6839 | 4.1796 | 2700 | 0.8344 | 0.5162 | | 0.6839 | 4.3344 | 2800 | 0.9089 | 0.5620 | | 0.6839 | 4.4892 | 2900 | 0.9665 | 0.5640 | | 0.8292 | 4.6440 | 3000 | 0.9128 | 0.5415 | | 0.8292 | 4.7988 | 3100 | 1.1925 | 0.5939 | | 0.8292 | 4.9536 | 3200 | 1.4327 | 0.6999 | | 0.8292 | 5.1084 | 3300 | 1.2741 | 0.7827 | | 0.8292 | 5.2632 | 3400 | 1.9348 | 0.8742 | | 1.4131 | 5.4180 | 3500 | 1.9216 | 0.9870 | | 1.4131 | 5.5728 | 3600 | 1.8565 | 0.9367 | | 1.4131 | 5.7276 | 3700 | 1.7828 | 0.8240 | | 1.4131 | 5.8824 | 3800 | 1.6847 | 0.8059 | | 1.4131 | 6.0372 | 3900 | 1.6440 | 0.7984 | | 1.7728 | 6.1920 | 4000 | 1.6765 | 0.8053 | | 1.7728 | 6.3467 | 4100 | 1.6733 | 0.8024 | | 1.7728 | 6.5015 | 4200 | 1.6601 | 0.7900 | | 1.7728 | 6.6563 | 4300 | 1.6605 | 0.7973 | | 1.7728 | 6.8111 | 4400 | 1.6599 | 0.7805 | | 1.6777 | 6.9659 | 4500 | 1.6359 | 0.7693 | | 1.6777 | 7.1207 | 4600 | 1.6400 | 0.7651 | | 1.6777 | 7.2755 | 4700 | 1.6759 | 0.7672 | | 1.6777 | 7.4303 | 4800 | 1.6849 | 0.7686 | | 1.6777 | 7.5851 | 4900 | 1.6858 | 0.7690 | | 1.683 | 7.7399 | 5000 | 1.6956 | 0.7702 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1