--- license: apache-2.0 base_model: facebook/wav2vec2-large-xlsr-53 tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-xlsr-53-ft-btb-ccv-cy results: [] --- # wav2vec2-xlsr-53-ft-btb-ccv-cy This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5355 - Wer: 0.4186 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | No log | 0.0194 | 100 | 3.5494 | 1.0 | | No log | 0.0387 | 200 | 3.0426 | 1.0 | | No log | 0.0581 | 300 | 2.8965 | 1.0 | | No log | 0.0774 | 400 | 1.8263 | 0.9829 | | 3.9715 | 0.0968 | 500 | 1.3860 | 0.8749 | | 3.9715 | 0.1161 | 600 | 1.3084 | 0.8153 | | 3.9715 | 0.1355 | 700 | 1.0550 | 0.7337 | | 3.9715 | 0.1549 | 800 | 1.0012 | 0.7190 | | 3.9715 | 0.1742 | 900 | 0.9137 | 0.6752 | | 1.0155 | 0.1936 | 1000 | 0.8486 | 0.6469 | | 1.0155 | 0.2129 | 1100 | 0.8535 | 0.6112 | | 1.0155 | 0.2323 | 1200 | 0.8350 | 0.6193 | | 1.0155 | 0.2516 | 1300 | 0.7681 | 0.5670 | | 1.0155 | 0.2710 | 1400 | 0.7377 | 0.5559 | | 0.7987 | 0.2904 | 1500 | 0.7130 | 0.5437 | | 0.7987 | 0.3097 | 1600 | 0.7040 | 0.5452 | | 0.7987 | 0.3291 | 1700 | 0.6729 | 0.5051 | | 0.7987 | 0.3484 | 1800 | 0.6646 | 0.5113 | | 0.7987 | 0.3678 | 1900 | 0.6531 | 0.4969 | | 0.6851 | 0.3871 | 2000 | 0.6414 | 0.5038 | | 0.6851 | 0.4065 | 2100 | 0.6109 | 0.4677 | | 0.6851 | 0.4259 | 2200 | 0.6035 | 0.4692 | | 0.6851 | 0.4452 | 2300 | 0.5802 | 0.4590 | | 0.6851 | 0.4646 | 2400 | 0.5720 | 0.4455 | | 0.5979 | 0.4839 | 2500 | 0.5695 | 0.4426 | | 0.5979 | 0.5033 | 2600 | 0.5557 | 0.4351 | | 0.5979 | 0.5226 | 2700 | 0.5499 | 0.4270 | | 0.5979 | 0.5420 | 2800 | 0.5451 | 0.4258 | | 0.5979 | 0.5614 | 2900 | 0.5383 | 0.4217 | | 0.5753 | 0.5807 | 3000 | 0.5355 | 0.4186 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1