File size: 2,483 Bytes
d6d841c
 
 
 
b6b1319
 
d6d841c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- automatic-speech-recognition
- ./data-configs/btb-cv-other.json
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-xlsr-53-ft-btb-cv-other-cy
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-xlsr-53-ft-btb-cv-other-cy

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4934
- Wer: 0.3776

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 800
- training_steps: 8000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 5.1054        | 0.0755 | 500  | 2.8161          | 1.0    |
| 1.4196        | 0.1509 | 1000 | 1.1687          | 0.7941 |
| 1.0028        | 0.2264 | 1500 | 0.9890          | 0.6953 |
| 0.8942        | 0.3019 | 2000 | 0.8935          | 0.6195 |
| 0.8285        | 0.3774 | 2500 | 0.8221          | 0.6075 |
| 0.763         | 0.4528 | 3000 | 0.7165          | 0.5307 |
| 0.7203        | 0.5283 | 3500 | 0.6892          | 0.5054 |
| 0.7051        | 0.6038 | 4000 | 0.6848          | 0.5070 |
| 0.6568        | 0.6792 | 4500 | 0.6342          | 0.4926 |
| 0.6315        | 0.7547 | 5000 | 0.5956          | 0.4494 |
| 0.6171        | 0.8302 | 5500 | 0.5533          | 0.4305 |
| 0.5717        | 0.9057 | 6000 | 0.5360          | 0.4212 |
| 0.5699        | 0.9811 | 6500 | 0.5184          | 0.4040 |
| 0.4905        | 1.0566 | 7000 | 0.5081          | 0.3967 |
| 0.4706        | 1.1321 | 7500 | 0.4991          | 0.3825 |
| 0.4614        | 1.2075 | 8000 | 0.4934          | 0.3776 |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1