--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-large-v3-ft-btb-ccv-cy results: [] --- # whisper-large-v3-ft-btb-ccv-cy This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4191 - Wer: 0.2911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.408 | 0.6311 | 1000 | 0.5 | 0.3734 | | 0.2455 | 1.2622 | 2000 | 0.4340 | 0.3233 | | 0.216 | 1.8933 | 3000 | 0.4010 | 0.3000 | | 0.1308 | 2.5245 | 4000 | 0.4069 | 0.2964 | | 0.0804 | 3.1556 | 5000 | 0.4191 | 0.2911 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1