File size: 2,157 Bytes
65c403a
 
 
 
 
92ad6c5
 
65c403a
 
 
 
92ad6c5
 
 
 
 
 
 
 
 
 
 
 
65c403a
 
 
 
 
 
 
92ad6c5
65c403a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
datasets:
- DewiBrynJones/commonvoice_18_0_cy
metrics:
- wer
model-index:
- name: whisper-large-v3-ft-fz-cv-cy
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: DewiBrynJones/commonvoice_18_0_cy default
      type: DewiBrynJones/commonvoice_18_0_cy
      args: default
    metrics:
    - name: Wer
      type: wer
      value: 0.2715416119925246
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-large-v3-ft-fz-cv-cy

This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the DewiBrynJones/commonvoice_18_0_cy default dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5067
- Wer: 0.2715

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer    |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 0.1024        | 4.0161  | 1000 | 0.3592          | 0.2914 |
| 0.0052        | 8.0321  | 2000 | 0.4336          | 0.2667 |
| 0.0014        | 12.0482 | 3000 | 0.4721          | 0.2708 |
| 0.0006        | 16.0643 | 4000 | 0.4972          | 0.2700 |
| 0.0005        | 20.0803 | 5000 | 0.5067          | 0.2715 |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1