DiTy commited on
Commit
24096c1
1 Parent(s): 873e89c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -181
README.md CHANGED
@@ -1,201 +1,87 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
10
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
 
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
 
 
 
 
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
 
 
 
201
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: sentence-transformers
3
+ pipeline_tag: text-classification
4
+ tags:
5
+ - sentence-transformers
6
+ - text-classification
7
+ - transformers
8
+ - rubert
9
+ - cross-encoder
10
+ - msmarco
11
+ datasets:
12
+ - unicamp-dl/mmarco
13
+ language:
14
+ - ru
15
+ base_model: DeepPavlov/rubert-base-cased
16
+ widget:
17
+ - text: "как часто нужно ходить к стоматологу? [SEP] Дядя Женя работает врачем стоматологом."
18
+ example_title: "Example 1"
19
+ - text: "как часто нужно ходить к стоматологу? [SEP] Минимальный обязательный срок посещения зубного врача – раз в год, но специалисты рекомендуют делать это чаще – раз в полгода, а ещё лучше – раз в квартал. При таком сроке легко отследить любые начинающиеся проблемы и исправить их сразу же."
20
+ example_title: "Example 2"
21
  ---
22
 
23
+ # DiTy/cross-encoder-russian-msmarco
24
 
25
+ This is a [sentence-transformers](https://www.SBERT.net) model based on a pre-trained [DeepPavlov/rubert-base-cased](https://huggingface.co/DeepPavlov/rubert-base-cased) and finetuned with [MS-MARCO Russian passage ranking dataset](https://huggingface.co/datasets/unicamp-dl/mmarco).
26
+ The model can be used for Information Retrieval in the Russian language: Given a query, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. See [SBERT.net Retrieve & Re-rank](https://www.sbert.net/examples/applications/retrieve_rerank/README.html) for more details.
27
 
28
+ <!--- Describe your model here -->
29
 
30
 
31
+ ## Usage (Sentence-Transformers)
32
 
33
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
34
 
35
+ ```
36
+ pip install -U sentence-transformers
37
+ ```
38
 
39
+ Then you can use the model like this:
40
 
41
+ ```python
42
+ from sentence_transformers import CrossEncoder
 
 
 
 
 
43
 
44
+ reranker_model = CrossEncoder('DiTy/cross-encoder-russian-msmarco', device='cuda')
45
 
46
+ query = ["как часто нужно ходить к стоматологу?"]
47
+ documents = [
48
+ "Минимальный обязательный срок посещения зубного врача – раз в год, но специалисты рекомендуют делать это чаще – раз в полгода, а ещё лучше – раз в квартал. При таком сроке легко отследить любые начинающиеся проблемы и исправить их сразу же.",
49
+ "Основная причина заключается в истончении поверхностного слоя зуба — эмали, которая защищает зуб от механических, химических и температурных воздействий. Под эмалью расположен дентин, который более мягкий по своей структуре и пронизан множеством канальцев. При повреждении эмали происходит оголение дентинных канальцев. Раздражение с них начинает передаваться на нервные окончания в зубе и возникают болевые ощущения. Чаще всего дентин оголяется в придесневой области зубов, поскольку эмаль там наиболее тонкая и стирается быстрее.",
50
+ "Стоматолог, также известный как стоматолог-хирург, является медицинским работником, который специализируется на стоматологии, отрасли медицины, специализирующейся на зубах, деснах и полости рта.",
51
+ "Дядя Женя работает врачем стоматологом",
52
+ "Плоды малины употребляют как свежими, так и замороженными или используют для приготовления варенья, желе, мармелада, соков, а также ягодного пюре. Малиновые вина, наливки, настойки, ликёры обладают высокими вкусовыми качествами.",
53
+ ]
54
 
55
+ predict_result = reranker_model.predict([[query[0], documents[0]]])
56
+ print(predict_result)
57
+ # `array([0.88126713], dtype=float32)`
58
 
59
+ rank_result = reranker_model.rank(query[0], documents)
60
+ print(rank_result)
61
+ # `[{'corpus_id': 0, 'score': 0.88126713},
62
+ # {'corpus_id': 2, 'score': 0.001042091},
63
+ # {'corpus_id': 3, 'score': 0.0010417715},
64
+ # {'corpus_id': 1, 'score': 0.0010344835},
65
+ # {'corpus_id': 4, 'score': 0.0010244923}]`
66
+ ```
67
 
 
68
 
69
+ ## Usage (HuggingFace Transformers)
70
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
71
 
72
+ ```python
73
+ # import torch
74
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
+ model = AutoModelForSequenceClassification.from_pretrained('DiTy/cross-encoder-russian-msmarco')
77
+ tokenizer = AutoTokenizer.from_pretrained('DiTy/cross-encoder-russian-msmarco')
78
 
79
+ features = tokenizer(["как часто нужно ходить к стоматологу?", "как часто нужно ходить к стоматологу?"], ["Минимальный обязательный срок посещения зубного врача – раз в год, но специалисты рекомендуют делать это чаще – раз в полгода, а ещё лучше – раз в квартал. При таком сроке легко отследить любые начинающиеся проблемы и исправить их сразу же.", "Дядя Женя работает врачем стоматологом"], padding=True, truncation=True, return_tensors='pt')
80
+
81
+ model.eval()
82
+ with torch.no_grad():
83
+ scores = model(**features).logits
84
+ print(scores)
85
+ # `tensor([[ 1.6871],
86
+ [-6.8700]])`
87
+ ```