nemuru-Y commited on
Commit
3a24561
1 Parent(s): 77a523f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -195
README.md CHANGED
@@ -1,199 +1,78 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: gemma
4
+ datasets:
5
+ - Digirise-ai/logical_data
6
+ language:
7
+ - ja
8
+ - en
9
+ base_model:
10
+ - google/gemma-2-9b-it
11
+ pipeline_tag: text-generation
12
  ---
13
 
14
+ ## Overview
15
+
16
+ This model is based on Google's Gemma2 9b it, fine-tuned to be compatible with prompts that require the model to organize information within itself and consider relationships before outputting results. This model is intended for experimental purposes only.
17
+
18
+ ## License
19
+
20
+ This model is licensed under the same terms as Google's Gemma.
21
+
22
+ ## How to use
23
+ ```python
24
+ # pip install accelerate
25
+ from transformers import AutoTokenizer, AutoModelForCausalLM
26
+ import torch
27
+
28
+ model_name = "Digirise-ai/GEMMA2-9b-Pollux-exp"
29
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
30
+ model = AutoModelForCausalLM.from_pretrained(
31
+ model_name,
32
+ device_map="auto",
33
+ torch_dtype=torch.bfloat16,
34
+ )
35
+ user_input = "チューリングテストとは何か、その目的と限界について説明してください。"
36
+
37
+ prompt = f"""
38
+ ##システムプロンプト
39
+
40
+ あなたの仕事はユーザーからの質問に対して、自分の中にある知識を整理して適切に回答することです。
41
+ ## ルール
42
+ - 出力の形式は以下の例に従ってください。
43
+ - 回答のたびにカウントをし、カウントした数を記録して出力してください。
44
+ - 数学的問題を解く必要がある場合、すべての作業を明示的に示し、正式な表記にはLaTeXを使用し、詳細な証明を提供すること。各ステップを論理的に説明し、使用する定理や法則の根拠を明確にすること。
45
+ - スコアの付け方とその後の判断は以下に示します。
46
+
47
+ ### スコアの付け方
48
+ - 0.8以上:現在のアプローチを継続。高い効果を維持しつつ、さらなる最適化の可能性を探ること。
49
+ - 0.5-0.7:軽微な調整を検討。具体的な改善点を特定し、それらに焦点を当てて修正すること。
50
+ - 0.5未満:戻ってやり直し、異なるアプローチを真剣に検討。失敗の原因を分析し、新たな視点や方法を積極的に探ること。
51
+ - スコア付けはすこし厳しい目線で行ってください。
52
+ - 以下に示す回答手順に従う。
53
+
54
+ ### 回答手順
55
+ あなたの解答手順は以下のとおりです。
56
+ 1. まず、ユーザーの質問を理解する(タグは<understand></understand>タグで囲ってください。)
57
+ 2. 次にユーザーの質問に関係がありそうな情報を自分の知っている範囲で列挙する。(タグは<basis></basis>タグで囲ってください。)
58
+ 3. その中で自分が確信できて信頼できる情報を元に理論的、論理的に情報と情報のつながりをまとめる(タグは<basis_connection></basis_connection>タグで囲ってください。)
59
+ 4. つながりをまとめたものを元にユーザーが求めている形式にまとめる。(タグは<pre></pre>タグで囲ってください。)
60
+ 5. その回答を0.0~1.0までのスコアで評価する。(0.7以下はアプローチを変える。0.9以下はそのままのアプローチを継続する。)
61
+ 6. スコアを上げるためにどうすればいいかを考える。(タグは<reflection></reflection>タグで囲ってください。)
62
+ 7. 考えた結果を実行し、それをまた評価する。(スコアが1になるまで以下5~7を繰り返し)
63
+ 8. スコア1の結果をユーザーに渡す。(タグは<output></output>タグで囲ってください。)
64
+
65
+ ## ユーザーインプット
66
+ {user_input}
67
+ """
68
+
69
+ messages = [
70
+ {"role": "user", "content": prompt},
71
+ ]
72
+ inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True, return_dict=True).to(model.device)
73
+
74
+ outputs = model.generate(**inputs, max_new_tokens=1024)
75
+ generated_text = tokenizer.batch_decode(outputs[:, inputs['input_ids'].shape[1]:], skip_special_tokens=True)[0]
76
+ print(generated_text.strip())
77
+
78
+ ```