File size: 2,403 Bytes
72de871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c59361c
72de871
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bank_statement_extractor-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bank_statement_extractor-v2

This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0708
- Precision: 0.9963
- Recall: 0.9963
- F1: 0.9963
- Accuracy: 0.9968

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 500

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 5.0   | 50   | 1.6411          | 0.7203    | 0.6886 | 0.7041 | 0.7302   |
| No log        | 10.0  | 100  | 0.7567          | 0.9599    | 0.9634 | 0.9616 | 0.9619   |
| No log        | 15.0  | 150  | 0.3852          | 0.9927    | 0.9927 | 0.9927 | 0.9937   |
| No log        | 20.0  | 200  | 0.2156          | 0.9927    | 0.9927 | 0.9927 | 0.9937   |
| No log        | 25.0  | 250  | 0.1415          | 0.9963    | 0.9963 | 0.9963 | 0.9968   |
| No log        | 30.0  | 300  | 0.1087          | 0.9963    | 0.9963 | 0.9963 | 0.9968   |
| No log        | 35.0  | 350  | 0.0896          | 0.9963    | 0.9963 | 0.9963 | 0.9968   |
| No log        | 40.0  | 400  | 0.0779          | 0.9963    | 0.9963 | 0.9963 | 0.9968   |
| No log        | 45.0  | 450  | 0.0720          | 0.9963    | 0.9963 | 0.9963 | 0.9968   |
| 0.4783        | 50.0  | 500  | 0.0708          | 0.9963    | 0.9963 | 0.9963 | 0.9968   |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1