Dizex commited on
Commit
7fdb2b0
1 Parent(s): 5d74f22

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -0
README.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ datasets:
4
+ - Dizex/InstaFoodSet
5
+ widget:
6
+ - text: "Today's meal: Fresh olive poké bowl topped with chia seeds. Very delicious!"
7
+ example_title: "Food example 1"
8
+ - text: "Tartufo Pasta with garlic flavoured butter and olive oil, egg yolk, parmigiano and pasta water."
9
+ example_title: "Food example 2"
10
+ tags:
11
+ - Instagram
12
+ - NER
13
+ - Named Entity Recognition
14
+ - Food Entity Extraction
15
+ - Social Media
16
+ - Informal text
17
+ - RoBERTa
18
+ license: mit
19
+ ---
20
+ # InstaFoodRoBERTa-NER
21
+
22
+ ## Model description
23
+
24
+ **InstaFoodRoBERTa-NER** is a fine-tuned BERT model that is ready to use for **Named Entity Recognition** of Food entities on informal text (social media like). It has been trained to recognize a single entity: food (FOOD).
25
+
26
+ Specifically, this model is a *roberta-base* model that was fine-tuned on a dataset consisting of 400 English Instagram posts related to food. The [dataset](https://huggingface.co/datasets/Dizex/InstaFoodSet) is open source.
27
+
28
+
29
+ ## Intended uses
30
+
31
+ #### How to use
32
+
33
+ You can use this model with Transformers *pipeline* for NER.
34
+
35
+ ```python
36
+ from transformers import AutoTokenizer, AutoModelForTokenClassification
37
+ from transformers import pipeline
38
+
39
+ tokenizer = AutoTokenizer.from_pretrained("Dizex/InstaFoodRoBERTa-NER")
40
+ model = AutoModelForTokenClassification.from_pretrained("Dizex/InstaFoodRoBERTa-NER")
41
+
42
+ pipe = pipeline("ner", model=model, tokenizer=tokenizer)
43
+ example = "Today's meal: Fresh olive poké bowl topped with chia seeds. Very delicious!"
44
+
45
+ ner_entity_results = pipe(example)
46
+ print(ner_entity_results)
47
+ ```
48
+
49
+ ## Performance on [InstaFoodSet](https://huggingface.co/datasets/Dizex/InstaFoodSet)
50
+ metric|val
51
+ -|-
52
+ f1 |0.91
53
+ precision |0.89
54
+ recall |0.93
55
+